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Turbulent Heat Transfer and Fluid -
Flow in. an Unsymmetricailf Heated 
Triangular Duct 
Experiments were performed to determine entrance-region and fully developed heat 
transfer characteristics for turbulent airflow in an unsymmetrically heated equilateral 
triangular duct; friction factors were also measured. Two of the walls were heated while 
the third was not directly heated. The resulting thermal boundary conditions consisted 
of uniform heating per unit axial length and circumferentially uniform temperature on 
the heated walls. Special techniques were employed to minimize extraneous heat losses, 
and numerical finite-difference solutions played an important role in both the design of 
the apparatus and in the data reduction. The thermal entrance lengths required to attain 
thermally developed conditions were found to increase markedly with the Reynolds num
ber and were generally greater than those for conventional pipe flows—a behavior which 
can be attributed to the unsymmetric heating. The fully developed Nusselt numbers were 
compared with circular tube correlations from the literature, from which it was shown 
that the hydraulic diameter is not fully sufficient to rationalize the circular and noncircu
lar duct results. However, excellent Nusselt number predictions were obtained by employ
ing the Petukhov-Popov correlation in conjunction with the measured friction factors for 
the triangular duct. This approach may have general applicability for predicting noncir
cular duct heat transfer. The friction factor results also affirmed the inadequacies of the 
hydraulic diameter but supported a general noncircular duct correlation available in the 
literature. 

Introduction 
The use of noncircular ducts in heat exchange devices is motivated 

by a variety of potential benefits. For example, noncircular configu
rations have enabled the development of highly compact heat ex
changers. A novel application of noncircular ducts is of current in
terest in connection with air-operated flat plate solar collectors. In
asmuch as airflow heat transfer coefficients are much lower than those 
of water flow, the circular tubes that are common in water-operated 
collectors have to be replaced with a duct configuration which affords 
greater heat transfer surface area. One such configuration is formed 
when the collector plate is a corrugated surface consisting of a suc
cession of V grooves. When the corrugated plate rests on the underside 
insulation of the solar collector, an array of triangular ducts is created 
which constitute the passages for the airflow. 

The research to be reported here is concerned with turbulent flow 
and heat transfer in a triangular duct. Although the initial motivation 
for the work was the aforementioned solar application, it was per
formed as a fundamental experimental study of convective heat 
transfer in a noncircular duct. Indeed, the experiments were carried 
out with a view to providing research results of impeccable quality 
which can serve as a standard against which analysis can be compared, 
as well as for direct input to design. The results were actually em
ployed in this way in the latter portion of the paper. There, the well-
known Petukhov-Popov circular-tube heat transfer correlation [1] 
was generalized to noncircular ducts by employing both the present 
heat transfer and friction factor data; the analytical-computational 
model of [2] for turbulent airflow in triangular ducts was also tested 
by comparison with the data. 

The experiments were performed utilizing a sharp-cornered equi
lateral triangular duct, two walls of which were heated, while the third 
wall was not directly heated. The geometrical configuration and the 
heating arrangement were designed to yield a standard thermal 
boundary condition—uniform heat input per unit axial length and 
circumferentially uniform temperature on the heated walls. In the 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 21,1980. 

design of the apparatus, numerical finite-difference solutions were 
employed to aid in the selection of wall thicknesses, in the positioning 
of heating wire, and in the placement of thermocouples. Once the 
experimental data had been obtained, finite-difference solutions 
enabled evaluation of the heat leakage from the directly heated walls 
of the duct to the unheated wall; heat losses to the environment were 

. also determined by finite differences. 
Heat-transfer-related measurements were made which yielded both 

entrance region and fully developed heat transfer coefficients, as well 
as thermal entrance lengths. Pressure distributions were also mea
sured, both for isothermal and nonisothermal conditions, from which 
friction factors were deduced. The.experiments encompassed the 
Reynolds number range from 4000 to 60,000. In the low Reynolds 
number range, auxiliary data runs were made to explore the possible 
presence of natural convection effects. Air was the working fluid in 
all cases. 

The relevant literature on turbulent heat transfer in triangular 
ducts will now be briefly reviewed. In an early investigation of equi
lateral ducts [3], average heat transfer coefficients for the duct as a 
whole were measured at high heating rates such that circumferential 
temperature variations of up to 55°C (100°F) were encountered. 
Later, in [4], measurements of heat transfer and friction character
istics were made in a narrow isosceles duct having an apex angle of 
11.46 deg. Although the duct was 116 hydraulic diameters in length, 
thermally developed conditions were generally not attained. Some
what more recently, experiments were performed in a rounded-corner 
equilateral triangular duct with a corner radius of curvature equal to 
15 percent of the duct hydraulic diameter [5]. Intense heating rates 
were employed in those experiments, which resulted in a decrease of 
the Reynolds number from entrance to exit of as much as 50 percent. 
The foregoing citations encompass the available experimental liter
ature on heat transfer. 

The most complete study of turbulent fluid flow phenomena in 
equilateral triangular ducts is that of [2], which included both ex
periments and analytical-numercial predictions (based on the Buleev 
mixing length and turbulence kinetic energy model). The numerical 
solutions v/ere extended to predict heat transfer coefficients, but 
without experimental confirmation. 
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The Exper iments 
The experiments were performed in an open-loop airflow circuit 

which took air from a building-wide system and ultimately discharged 
it to the atmosphere. Along its path of flow, the air first encountered 
a succession of control and regulator valves and a filter, after which 
it was metered by one of two calibrated sharped-edged orifices which 
were respectively employed for high and low flow rates. It was then 
ducted to a plenum chamber fitted with baffles and a flow straight-
ener—the plenum served as a transition from the circular tubing of 
the upstream piping system to the downstream triangular cross sec
tion. 

The air exiting the plenum passed into an unheated equilateral 
triangular duct (made of plexiglass) which served as a hydrodynamic 
development section. The development section mated with the 
electrically heated test section. Both sections were of identical internal 
dimensions; side of triangle = 3.97 cm (1.56 in.), hydraulic diameter 
= 2.29 cm (0.902 in.). The respective axial lengths of the development 
and test sections were 53 and 106 hydraulic diameters. After passing 
through the test section, the air was thermally mixed in a specially 
designed mixing chamber, from which it was ducted to an outside 
exhaust. 

The key components of the experimental apparatus will now be 
described. The description will highlight the novel measures that were 
employed to thermally isolate the heated test section in order to 
minimize possible extraneous heat losses or gains; another focus is 
the role of computer modeling as an adjunct to the apparatus design. 
Details of the apparatus and its design, beyond those given here, may 
be found in [6]. 

Heated Test Section. The triangular duct which served as the test 
section consisted of two relatively thick metallic walls and a thinner 
wall of a lesser conducting material. A cross-sectional view showing 
the duct wall configuration is presented in Fig. 1. The metallic walls 
were of aluminum, with a thickness of 0.952 cm (0.375 in.). The choice 
of aluminum of this thickness, taken together with the adopted 
heating method, was made with a view toward obtaining axially uni
form heating and circumferentially uniform temperature on the two 
heated walls. 

Heating was accomplished by means of electrical resistance wire 
embedded in longitudinal grooves machined in the outer face of each 
aluminum wall (see Fig. 1). Numerical finite-difference solutions of 
a model of this heating arrangement were employed to demonstrate 
that for the chosen wall material, wall thickness and heater-groove 
spacing, and for expected values of the heat transfer coefficient, 
uniform temperature is attained on the face of the wall that is in 
contact with the airflow. A generalized version of the analytical model 
is available in [7] along with representative results. 

The third wall of the duct (i.e., the lower wall as pictured in Fig. 1) 
was made of plexiglass—chosen because of its moderately low thermal 
conductivity, light weight, surface smoothness, and availability in 
many sizes. The design objective for this wall was to approximate, as 
closely as possible, a zero heat flux surface. In practice, heat conduc
tion across the surfaces of contact between the lower wall and the 
heated walls operates to oppose this objective. Both the size of the 
contact surface and thickness (0.318 cm, 0.125 in.) of the plexiglass 
wall were chosen as small as possible relative to mechanical constraints 
such as strength, wall flatness, and avoidance of leaks. To guide the 
trade-off between these mechanical constraints and the aforemen-

Fig. 1 Cross taction of the hosted test section 

tioned heat transfer objective, the effects of both contact size and wall 
thickness on the heat flow via the plexiglass into the fluid were ex
amined by means of finite-difference solutions detailed in Chapter 
4 of [6]. The quantitative extent of this indirect heating of the fluid 
will be presented in the Results section of the paper. 

To facilitate the assembly of the duct, bevels were painstakingly 
cut into the edges of the aluminum walls as indicated in Fig. 1. The 
bevels extended along the entire 244-cm (8-ft.) length of the duct. The 
two aluminum walls were held together along their upper extremities 
by screws and nuts positioned at 10-cm (4-in.) intervals (the recesses 
for the screws and nuts are indicated by dashed lines in Fig. 1). Fas
tening of the aluminum side walls to the plexiglass bottom wall was 
accomplished by nylon screws positioned at the same interval—nylon 
being chosen to minimize heat conduction. To insure a leak-free seal, 
silicone rubber was packed into the V-shaped grooves at the inter
sections of the walls. 

Thermocouples were installed at 14 axial stations along the test 
section. The use of the relatively thick-walled aluminum provided the 
options of surface mounting (on the rear face) or of embedding the 
thermocouples within the wall. The latter has the apparent advantage 
of placing the point of measurement closer to the inner surface of the 
wall, where the temperature value is desired, but also may cause a 
disturbance of the temperature field in the wall. Rear-face mounting 
also has both advantages and disadvantages. To resolve the issue, 
computational models were made for both situations (Chapter 4 of 
[6]), taking account of conduction in the wall, in the thermocouple 
leads, and in the insulation around the duct. These computations 
showed that wall embedding gives rise to a slightly more accurate 
temperature measurement and argued strongly for the use of iron-
constantan wire rather than copper-constantan wire. 

The thermocouples in the heated walls were positioned in drill holes 
which penetrated to within 0.19 cm (0.075 in.) of the inner surface. 
Prior to the insertion of the thermocouples, the holes were filled with 
a paste of copper-oxide cement, which subsequently hardened around 
the inserted thermocouples (copper-oxide cement is a moderately 
good heat conductor and an excellent electrical insulator). Three to 
five thermocouples were circumferentially distributed in the alumi
num walls at each instrumented axial station. The coordinates of these 
stations will be evident from the data to be presented later. 

At these same stations, a row of thermocouples was positioned along 
the spanwise centerline of the lower (plexiglass) wall. Owing to the 
thinness of this wall, external surface mounting of the thermocouples 
was the only viable option. Good thermal contact between the ther
mocouple junctions and the wall was ensured by the use of copper 

-Nomencla ture-

/ = friction factor, equation (4) 
h = local circumferential-average heat 

transfer coefficient 
h = heat transfer coefficient for convection 

at lower wall 
I\ = hydraulic diameter 
k = thermal conductivity of air 
kp = thermal conductivity of plexiglass 
rh = mass flow rate 
Nu = Nusselt number, hDh/k 
P = wetted perimeter of flow cross section 

Pr 
wetted perimeter of heated walls 
Prandtl number 

p = static pressure 
Q' = local rate of heat transfer per unit length 

from heated walls to fluid 
Q't = total rate of heat transfer per unit 

length from all walls to fluid 
Re = Reynolds number 
T = temperature 
Tb - bulk temperature 

Tb = bulk temperature for convection at 
lower wall 

Tu = bulk temperature at inlet 
Tw = wall temperature 
u = mean velocity 
x = axial coordinate 
xent = entrance length 
M = viscosity 
v = kinematic viscosity 
p = density 
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oxide cement, whereas tape and epoxy were employed for strength 
and positive positioning. 

For the determination of the axial pressure distribution along the 
duct, seven taps were installed in a row in one of the aluminum walls 
at a streamwise interval of ten hydraulic diameters. The tap in a given 
cross section was located at the circumferential midpoint of its host 
wall. 

The instrumentation for the temperature and pressure readings 
will be described shortly. 

Prior to the final assembly of the test section, the inner surface of 
the aluminum walls was hand polished to a high degree of smoothness. 
Special precautions were taken to eliminate burrs or other irregu
larities adjacent to the pressure tap holes. 

Hydrodynamic Development Section; Mixing Box. As was 
noted earlier, the heated test section was preceded by a 53 diameters 
long unheated hydrodynamic development section. The development 
section was an equilateral triangular duct with inner dimensions 
identical to those of the test section. It was assembled from three 
pieces of plexiglass, two of which were bevelled in a manner identical 
to that for the aluminum walls of the test section. The assembly 
procedures were the same as for the test section, and the final as
sembled cross section is, with the exception of the heater wire grooves, 
well portrayed by Fig. 1. 

The two side walls of the development section were 1.25 cm in 
thickness (V2 in.), whereas the lower wall was 0.318-cm (0.125-in.) 
thick. It may be noted that the latter dimension is identical to the 
thickness of the plexiglass lower wall of the test section. In fact, to 
facilitate the assembly of the system, the test-section lower wall was 
designed to extend upstream, and thus to serve as the downstream 
end of the lower wall of the development section. 

To monitor upstream thermal events, three thermocouples were 
installed in the wall of the development section (1,10, and 20 diam
eters upstream of the test section). Two additional thermocouples, 
10 and 20 diameters from the test section, were passed through the 
plexiglass wall into the airflow. These thermocouples, whose readings 
were always identical, yielded the inlet bulk temperature for the test 
section. 

A mixing box was positioned at the downstream end of the test 
section for the determination of the exit bulk temperature. In view 
of the asymmetric heating of the airflow, the conventional three- or 
four-disk mixing box, with either centrally or peripherally positioned 
throughflow holes "in the consecutive disks, is not sufficient for the 
mixing task. Instead, a special mixing box was designed to promote 
large scale transverse and circumferential motions (complete drawings 
are available in [6]). Thermocouple traverses immediately down
stream of the mixing box indicated temperature uniformity to within 
1 or 2 fiV. For the actual temperature measurement of the mixed 
airflow, two thermocouples were employed, each installed in a six-
legged star-shaped copper structure that spanned the cross section 
of the mixing box at its downstream end. 

Minimization of Extraneous Heat Losses. The special measures 
employed to minimize extraneous heat losses will now be described. 
The need for extra care in the present experiments stems from the 
use of a thick-walled heated duct. Direct face-to-face contact of the 
upstream and downstream edges of the duct with the walls of the 
development section and of the mixing box would provide active 
conduction paths for heat loss and, therefore, the cross sections of 
those paths must be minimized. We will deal here with the adopted 
measures for curbing heat losses from the heated test section to the 
hydrodynamic development section, to the mixing box, and to the 
surroundings. 

Consider first the mating between the aluminum walls of the test 
section and the corresponding plexiglass walls of the hydrodynamic 
development section. As shown in Fig. 2, full-face contact was avoided 
in favor of contact between a thin lamina A, which extends down
stream from the plexiglass wall, and the aluminum wall. To prepare 
for this arrangement, a lap-like recess, 1.27-cm (0.5-in.) long and with 
a depth of approximately 0.046 cm (0.018 in.), was machined at the 
downstream end of the plexiglass wall. Then, a 2.54-cm (l-in.)-long 
phenolic lamina A was cemented into the recess, and the resulting 

- » A 

C 
Fig. 2 Ammgameni tor minimizing h#at conduction at the ustiream «nd of 
the lest section 

surface was finished smooth. The forward edge of the phenolic ex
tended 1.27 cm (0.5 in.) beyond the plexiglass, and it was this edge that 
contacted the aluminum. 

To avoid leaks at the contact, a thin (0.005 cm, 0.002 in.) pres
sure-sensitive tape B was pressed in place as shown in Fig. 2. The main 
defense against leaks was made on the outer face of the walls. Here, 
a thicker plastic sheet C bridged between the two walls, with an air
tight seal being achieved with silicone rubber D. To hold the just-
described arrangement in place, a pair of narrow isolated plexiglass 
struts (not shown in the figure) bridged the gap just under the plastic 
sheet C. 

Direct contact between the two aluminum walls and their upstream 
plexiglass counterparts was avoided by the aforementioned ar
rangement. With regard to the lower, not-directly-heated, wall of the 
test section (i.e., the plexiglass wall), it extends continuously upstream 
into the hydrodynamic development section. To minimize conduction 
along this wall, a spanwise cut was made from the outside surface 
which reduced the wall thickness to half the original value of 0.318 
cm (0.125 in.). This cut was made at the cross section at which the 
heating was initiated. 

Attention will now be turned to the measures used to minimize 
extraneous heat transfer between the downstream end of the test 
section and the mixing box. One of these measures was to reduce the 
conduction cross section of the aluminum walls by making a spanwise 
cut in each wall just upstream of the mixing box. The wall thickness 
at the location of the cut was 0.1 cm (0.040 in.) rather than the original 
thickness of 0.953 cm (0.375 in.). In addition, a spanwise cut was made 
in the lower (plexiglass) wall which locally reduced its thickness by 
a factor of two. Also, on the face of the mixing box which mated with 
the test section, numerous crater-like holes were drilled to reduce the 
cross section for heat conduction. 

The measures for minimizing heat losses from the duct to the en
vironment will now be discussed. To avoid heat conduction through 
structural supports, the entire assembly consisting of the hydrody
namic development section, the test section, and the mixing box was 
suspended by 0.043-cm (0.017-in.) dia nylon line at five axial stations. 
The nylon line was carefully monitored for stretch and sag, and none 
was encountered after an initial break-in period. 

The aforementioned assembly was positioned within an insulated 
chamber of cross sectional dimensions 25 X 25 cm (10 in. X 10 in.). The 
chamber walls were of styrofoam, leaving a hollow cavity 10 X 15 cm 
(4X6 in.) for the apparatus. Silica aerogel powder insulation, which 
has a thermal conductivity less than that of air, was poured into the 
cavity around the apparatus. 

The other parts of the piping system were lagged with fiberglass 
insulation. 

Other Instrumentation. All thermocouples were made from 
30-gage, calibrated iron and constantan wire. After installation of the 
thermocouples, they were led out of the insulation enclosure in a single 
bundle which terminated in a thermocouple junction box which 
contained connectors and switches. The box also contained aluminum 
bars and insulation to promote temperature uniformity. Thermo
couple emfs were read with a Hewlett-Packard 3465A digital mul
timeter with a smallest digit of 1 fiW. 

For the test section pressure distribution, the pressure signals were 
sensed by a Baratron solid-state capacitance-type meter capable of 
being read to as low as 10 -3 torr. The Baratron provided a digital 
output which was read by the aforementioned HP multimeter. 

The test section power input was regulated to ensure constancy and 
was read by a specially calibrated electrodynamometer wattmeter 
with a full-scale accuracy of 0.25 percent. 
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Data Reduction 
The main objective of the data reduction procedure was to yield 

axially local heat transfer coefficients for the heated walls of the tri
angular duct, both in the thermal entrance region and in the thermally 
developed region. The coefficients to be determined will represent 
circumferential average values at each axial station. Friction factors 
will also be deduced from the measured pressure distributions. 

The local circumferential-average heat transfer coefficient for the 
heated walls is defined here as 

h = (Q'IPq)/(Tw - Tb) (1) 

where Q' is the rate of convective heat transfer per unit axial length 
from the heated walls to the fluid, and Pq is the wetted perimeter of 
the heated walls. The temperatures Tw and Tb respectively represent 
the values for the heated wall and the bulk. It is worthy of note that 
all of the wall-embedded thermocouples (i.e., in the aluminum walls) 
at any axial station gave temperature readings within 0.02°C of each 
other. Therefore, the heated walls may be regarded as being circum-
ferentially uniform in temperature. All quantities in equation (1) 
pertain to a given axial station x. 

In equation (1), only Tw is directly measured, whereas Q' and Tb 
are obtained from the data reduction procedure (P, is equal to 7.92 
cm (3.12 in.)). The starting point in the determination of Q' is the 
electric power dissipated in the resistance wire situated in the longi
tudinal grooves on the rear faces of the aluminum walls.1 Two cor
rections were applied to the power dissipation per unit length in order 
to obtain Q'. One of these is for the heat loss from the duct outer 
surfaces to the environment via conduction through the insulation. 
The other is for the heat which flows by conduction from the heated 
walls into the plexiglass wall (i.e., the lower wall) and then passes into 
the airstream by convection at that wall. The latter heat flow is, in fact, 
not a heat loss; rather, it causes a rearrangement of the surface loca
tions at which heat enters the airstream. 

The determination of these two corrections involved a lengthy 
computation which is described in detail in [6] and will be discussed 
here only in broad terms. For the heat loss through the insulation, a 
two-dimensional, finite-difference conduction network was set up to 
accommodate the irregular solution domain encompassing the outer 
walls of the triangular duct and the somewhat irregular rectangular 
boundaries of the two zones of insulation (silica aerogel and styro-
foam). The temperature inputs needed for these finite-difference 
solutions included the surface temperatures of the aluminum and 
plexiglass walls and the temperature of the air in the surroundings. 
Of these, the temperatures of the aluminum and of the surroundings 
were known from direct measurement, but the plexiglass surface 
temperature varies with spanwise position and only the mid-span 
value is available from measurement. The needed spanwise temper
ature distribution was obtained from the calculated temperature field 
in the plexiglass wall, the determination of which will now be de
scribed. 

As already noted, heat is conducted into the plexiglass wall through 
its surfaces of contact with the heated aluminum walls and then flows 
by convection into the airstream. A fine-grid, two-dimensional fi
nite-difference conduction network was superposed on the plexiglass 
wall to facilitate determination of the temperature distribution and 
the convection heat transfer. This computation was elevated from the 
routine by a philosophical issue related to the convective boundary 
condition. 

To explore this issue, let y denote the direction normal to the inner 
surface of the plexiglass wall. Then, at that surface 

-kp(dT/dy) = h(T - fb) (2) 

where kp is the thermal conductivity of the plexiglass. The quantities 
ft and fb respectively represent the heat transfer coefficient and bulk 
temperature that are relevant to the convective heat transfer at the 

1 The wattmeter reading was corrected to take account of ohmic dissipation 
in small segments of heating wire that lay outside the grooves. Also, thermo
couple lead losses, which were ~0.1 percent, were prorated uniformly along the 
duct. 

plexiglass surface. A careful study of the problem reveals that either 
h or Tb must be provided as input and, with that, the solution will 
yield the other of the two via an iterative procedure which makes use 
of the measured temperature at the mid-span point on the rear face 
of the wall. The solution also makes use of the measured temperature 
of the aluminum walls, which is assumed to prevail at the interface 
with the plexiglass wall. 

Both options were explored. In one, h was taken equal to the av
erage heat transfer coefficient at the heated walls of the duct, while 
Tb was treated as an unknown. In the other, fb was set equal to the 
bulk temperature for the cross section as a whole and fi was the un
known. There was little practical effect of using one option versus the 
other, as reflected in the fact that the extreme difference in the re
sulting heat transfer coefficients for the heated walls was only three 
percent. 

For the authors, the first option is more satisfying on physical 
grounds and, therefore, it has been used for the final data-reduction 
computations. We do not believe that the bulk temperature Tb, which 
is primarily set by the heat transfer rates at the aluminum walls, has 
very much influence on the rate of convective heat transfer at the 
plexiglass wall;2 in a real sense, Tb is quite remote from the plexiglass 
wall. Furthermore, considering the similarity of the flow pattern ad
jacent to all three walls, it is not unreasonable to use the same h at the 
plexiglass wall as at the other walls. 

The numerical solutions for the plexiglass wall yield the rate at 
which heat passes out of the heated walls at the surfaces of contact 
with the plexiglass. This, in turn, completes the determination of Q' 
for equation (1). These computations were performed at each in
strumented axial station. The foregoing description was intended to 
sketch the broad outlines of the computation procedure, but not to 
reproduce the details given in [6], 

The bulk temperature appearing in equation (1) was computed by 
a step-by-step marching procedure that moved downstream along the 
duct, making use of the net heat transfer to the airstream at each 
station. 

The effects of axial heat conduction in the aluminum walls were 
also examined. It was found that within the accuracy of the temper
ature instrumentation, significant effects of axial conduction could 
not be identified except at the most upstream stations at low Reynolds 
numbers. Owing to the uncertainty of the axial conduction corrections 
(i.e., large changes in d2T/dx2 in response to small temperature 
uncertainties), the questionable data points will be omitted from the 
forthcoming presentation of results (see uncertainty analysis in 
Chapter 5 of [6]). 

Once the local heat transfer coefficient had been determined from 
equation (1), the local Nusselt number was evaluated from 

Nu = hDJk (3) 

where Dh is the hydraulic diameter of the duct (2.29 cm, 0.902 in.) and 
k is the thermal conductivity of the airstream at the local bulk tem
perature. 

The measured axial pressure distributions yielded, in each case, 
a straight line on a p versus x diagram, the slope of which was deter
mined from a least-squares fit. This information was recast in di-
mensionless form via the friction factor 

/ = (-dp/dx)Dh/y2pu* (4) 

where pu2 was evaluated at the midpoint of the axial length over 
which p was measured. 

The heat transfer and friction factor results are parameterized by 
the Reynolds number Re defined as 

Re = uDhlv = Arh/nP (5) 

in which m is the mass flow rate and P is the perimeter of the walls 
which bound the flow cross section. For the actual evaluation of Re, 

2 The calculated convective heat transfer rate at the plexiglass wall ranged 
from three to ten percent of the total convective input to the air over the 
Reynolds number range from 59,000 to 4000 (see Table V, p. 136 of [6]). 
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the rightmost term of equation (5) was used, with /M at the local bulk 
temperature. 

In general, property variations did not play a major role in the re
sults. The maximum wall-to-bulk temperature difference was about 
10°C (18°F), and the maximum bulk temperature rise from inlet to 
exit was of the same general magnitude. 

Results and Discussion 
The main focus of the presentation that follows will be the heat 

transfer results. Friction factors will also be presented, and they will 
be employed in correlating the fully developed heat transfer coeffi
cients. To avoid interrupting the smooth flow of the heat transfer 
presentation, initial attention will be directed to the friction factor 
results. 

Friction Factors. The friction factor results are plotted as a 
function of the Reynolds number in Fig. 3, where the open circles 
represent the isothermal data and the blackened circles correspond 
to the heat transfer runs. These two sets of data are nearly coincident 
and show the trend of f decreasing with Re that is typical of flow in 
smooth ducts. 

Three literature correlations are shown in the figure in order to 
provide a comparison with the present results. The two uppermost 
curves respectively represent the Blasius and Prandtl circular tube 
correlations, which were applied here by employing the hydraulic 
diameter as the characteristic dimension. The comparison shows that 
the hydraulic diameter concept is not sufficient to rationalize the 
difference between the tube and triangular duct geometries, leaving 
an accuracy gap for/ of 10 to 15 percent. The lower curve represents 
a general noncircular duct friction factor correlation [8] which was 
specialized to the present configuration. In the range of Re >7000, 
the present data agree with the correlation within two percent, on the 
average, thereby affirming its validity for the equilateral triangular 
duct. Since the correlation was developed for fully turbulent flow, the 
larger deviations at lower Reynolds numbers are not unexpected. 
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The square data symbols, which represent experimental results 
from [2], lie slightly above the present data. Finite difference solutions 
were also performed in [2] for the Reynolds number range between 
40,000 and 300,000. For Reynolds numbers between 40,000 and 60,000, 
the predicted friction factors are about two percent lower than those 
given by the correlation of [8], which means almost exact agreement 
between the predictions and the present data. This agreement lends 
support to the computational model used in [2]. 

Temperature Distributions. Heat transfer data runs were made 
for eight Reynolds numbers between 4000 and 59,000. The measured 
axial temperature distributions display an interesting evolution in 
shape as a function of the Reynolds number, which is fully docu
mented in [6]. Here, it will be sufficient to show results for two 
Reynolds numbers, one high and one low (59,130 and 6740), in order 
to illustrate the trends, and Figs. 4 and 5 have been prepared for this 
purpose. 

In these figures, the temperature is made dimensionless in the 
form 

(T - Tbi)KQ'tlk) (6) 

Fig. 3 Friction factor results 

In this expression, TM is the inlet bulk temperature and k is the 
thermal conductivity of the air at the mean bulk temperature. The 
quantity Q't is the total rate of heat transfer to the air per unit axial 
length, encompassing contributions from the directly heated walls 
and from the indirectly heated lower wall. Since Tu, Q't, and k are 
fixed constants for each data run, the axial variation of the dimen
sionless group of equation (6) is a true reflection of the axial tem
perature variation. 

In each figure, there are three sets of data points. The uppermost 
set depicts the temperature variation along the heated walls (as noted 
earlier, the temperature of the heated walls is circumferentially uni
form). The other two sets, both of which are in the lower part of the 
figure, respectively depict the calculated values of the bulk temper
ature and the measured temperatures along the midspan of the rear 
face of the lower wall. 

Attention may first be turned to the high Reynolds number results, 
Fig. 5. The temperature distribution on the heated wall displays a 
classical pattern that reflects the uniform heating condition—namely, 
an initial rapid rise that evolves into an ascending straight line which 
parallels the temperature rise of the bulk. The bulk temperature itself 
departs only very slightly from a straight line, the departures being 
due to slight variations in the heat losses along the duct. The region 
in which there is parallelism between the heated-wall and bulk tem
peratures grows larger as the Reynolds number decreases. 

Figure 5 also shows that the midspan temperatures on the lower 
wall fall below the bulk temperature at the higher Reynolds numbers, 
and this relationship continues to prevail for all Re > 10,000. There 
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is a tendency for the two distributions to become parallel at the most 
downstream stations. That the temperature of the lower wall is rela
tively low at these Reynolds numbers is indicative of the low rate at 
which heat is conducted into the lower wall from the directly heated 
walls. This low rate of conduction is the result of the relatively efficient 
convective heat transfer from the directly heated walls to the air-
stream, which makes the conduction leakage path to the plexiglass 
relatively unattractive. 

The fact that the rear-face midspan temperature of the lower wall 
falls below the corresponding bulk temperature should not be taken 
as an indication that heat is being transferred from the airstream to 
the wall. In the lower part of the flow cross section, there is a zone of 
relatively low-temperature air (i.e., temperatures lower than the bulk 
temperature). It is the temperatures of the air in that zone, rather than 
the bulk temperature, which controls the magnitude and direction 
of the convective heat transfer at the lower wall. 

The temperature distributions for Re = 6740 (Fig. 4) are quite 
different from those for Re = 59,130 which were just discussed. These 
differences evolve progressively with decreasing Reynolds number, 
as is evidenced in the successive figures presented in [6]. The main 
characteristics of the low Reynolds number distributions are: (1) 
parallelism between the heated-wall and bulk temperature distri
butions that is in force along most of the length of the duct, (2) tem
peratures on the lower wall that exceed the bulk temperature, and (3) 
a droop of the heated-wall temperature distribution near the down
stream end of the duct. 

The first of these characteristics implies a very short thermal de
velopment length, and we will return to this matter shortly when the 
Nusselt number results are presented. The second and third charac
teristics indicate the strengthened role of heat conduction which re
sults from the less efficient convective heat transfer at the directly 
heated walls when the Reynolds number is low. Thus, the droop in 
the heated-wall temperatures at the downstream end of the duct is 
due to extraneous conduction to the mixing box. Furthermore, con
duction from the heated walls into the lower wall is responsible for 
the elevation of the latter's temperature above the bulk. 

Nusselt Numbers «nd Thermal Entrance Lengths. Circum
ferential-average Nusselt numbers for the heated walls have been 
determined at a succession of axial stations by employing the data 
reduction procedures described earlier. These results are presented 
in Fig. 6, where the Nusselt number is plotted against the dimen-
sionless axial coordinate x/Dh (x = 0 corresponds to the beginning 
of the heated test section). The figure displays axial distributions for 
eight Reynolds numbers in the range from 4070 to 59,130. Supple
mentary data runs for the two lowest Reynolds numbers and for Re 
^ 29,000 yielded results so close to those in the figure that they could 
not be plotted separately. 

Examination of the figure shows the expected trend whereby higher 
Nusselt numbers correspond to higher Reynolds numbers. Also, the 
curves for the higher Reynolds numbers display the classic develop
mental pattern characterized by relatively high heat transfer coeffi
cients near the inlet which decrease smoothly throughout the thermal 
entrance region and ultimately attain an axially unchanging fully 
developed value. It is, however, interesting to note that at these 
Reynolds numbers, the entrance length, as measured in terms of the 
hydraulic diameter, is rather long; in fact, fully developed conditions 
are just barely achieved. As the Reynolds number decreases, the 
length of the entrance region decreases markedly. (Note that at the 
two lowest Reynolds numbers, data affected by axial conduction have 
not been presented). 

For a quantitative characterization, the thermal entrance length 
may be defined as the axial location at which the heat transfer coef
ficient approaches to within five percent of its fully developed value. 
Entrance lengths corresponding to this definition are presented in 
Fig. 7, where the marked increase with Reynolds number is clearly 
evident. To obtain perspective about these results, the relevant lit
erature may be examined. For triangular-duct heat transfer, no en
trance lengths were determined in [3] (only average coefficients were 
measured), while in [5] the large property-related Reynolds number 
variations along the duct make the definition of an entrance length 
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Fig. 7 Thermal entrance lengths based on a five percent approach of Nu to 
Its fully developed value 

quite uncertain. In [4], for a small apex-angle triangular duct, very 
large entrance lengths were encountered. 

Also relevant are the experiments of [9] involving turbulent airflow 
in a circular tube heated on only half of its circumference. There, it 
was found that the thermal entrance lengths were considerably greater 
than those for a circumferentially uniformly heated tube; furthermore, 
the entrance lengths increased markedly with Reynolds number, as 
in the present experiments. 

From the foregoing, it can be concluded that nonuniform heating 
increases the length of the thermal entrance region. The noncircular 
geometry of the duct cross section may also be a contributing 
factor. 

Fully Developed Nusselt Numbers. It is relevant to compare 
the fully developed Nusselt numbers to literature information and 
to seek the best possible correlation. From the literature, we take the 
venerable Dittus-Boelter correlation and the newer Petukhov-Popov 
correlation [1], respectively 

Nu = 0.023Re°-8Pr0'4 
(7) 
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and 

where 

Nu = (//8)RePr/(1.07 + 12.7(Pr2/3 - 1)(//8)1/2) (8) 

/ = (1.82 logioRe - 1.64)-2 (9) 

Both of these correlations were developed for circular tubes and are 
specified to be applicable for Re > 10,000. 

Equations (7-9) have been evaluated using the hydraulic-diameter 
Reynolds numbers and are compared with the present data in Pig. 
8. For Re > 10,000, the Dittus-Boelter equation overpredicts the data 
by about 30 percent, while the Petukhov-Popov equation is about 15 
percent above the data.3 Although this comparison adds further 
confirmation of the superiority of the Petukhov-Popov correlation 
relative to that of Dittus-Boelter, it also demonstrates that the hy
draulic diameter does not provide an adequate rationalization of the 
noncircular geometry. 

In considering the causes of less-than-successful performance of 
the literature correlations, specifically Petukhov-Popov, note may 
be taken of Fig. 3 which indicates that the circular-tube friction factor 
results deviate from those of the equilateral triangular duct, even 
when the hydraulic diameter is employed. This suggests the use of 
the measured triangular-duct friction factors as input to the Petuk
hov-Popov equation (8), replacing the circular-tube friction factor 
equation (9). When this is done, a duct-specific Petukhov-Popov 
prediction is obtained, as shown in Fig. 9 along with the experimental 
data. For Re > 10,000, the duct-specific prediction agrees with the 
data in the 1-5 percent range. This level of agreement is actually 
better than that achieved when the Petukhov-Popov correlation is 
compared with circular tube data. 

Although a fully certain recommendation cannot be made at this 
time, it appears reasonable, when employing the Petukhov-Popov 
correlation for a noncircular duct, to input the friction factors for that 
duct, provided that they are available. 

As an alternative correlation of the present data, a power-law fit 
yields 

Nu = 0.019Re0-781 (10) 

to an accuracy of about four percent. 
The present data will now be compared with the results of the 

turbulent-flow finite-difference solutions of [2], For these solutions, 
the thermal boundary condition was circumferentially uniform 
temperature (on all three walls) and axially uniform heat input. Nu
merical results are reported only for Re > 40,000. Comparison with 
the present data for the two highest Reynolds numbers yields agree
ment within four percent (the prediction being high). This excellent 
level of agreement lends support to the analytical model and its nu
merical implementation. 

Na tura l Convection Effects. Out of concern for possible natural 
convection effects, supplementary data runs were made for each of 
the two lowest Reynolds numbers such that the Grashof number was 
varied by a factor of two, from 6 X 103 to 1.3 X 104. The Grashof 
number variation had no detectable effect on the Nusselt number [6], 
and it was thus concluded that natural convection effects were neg
ligible. 

C o n c l u d i n g R e m a r k s 
The experiments reported here were designed with unusual care 

and attention to detail in order to provide research results of such 
quality as to serve as a standard against which analysis can be com
pared. Special techniques were employed to minimize extraneous heat 
conduction. Numerical finite-different solutions played an important 
role in both the design of the apparatus and in the data reduction. 

The friction factor data underscored the fact that the hydraulic 
diameter is not completely successful in bringing circular tube cor
relations into agreement with noncircular duct results. The data did, 
however, support the predictions of a general noncircular duct cor-
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Fig. 9 Comparison of measured fully developed Nusselt numbers with the 
Petukhov-Popov correlation evaluated with the measured friction factors as 
Input 

relation [8] as well as those from numerical solutions of a modeled 
turbulent flow [2]. 

Nusselt numbers were determined both in the thermal entrance 
region and in the fully developed region of the duct. The length of the 
entrance region increased markedly with Reynolds number. Entrance 
lengths, based on a five percent approach to fully developed condi
tions, ranged from 18 to 40 hydraulic diameters over the Reynolds 
number range from 6700 to 57,000. These lengths are greater than 
those for conventional duct flows (for air) and are believed to reflect 
the unsymmetric heating. 

The experimentally determined fully developed Nusselt numbers 
were compared with both the Dittus-Boelter and Petukhov-Popov 
circular tube correlations (applicable for Re > 10,000), with the hy
draulic diameter replacing the tube diameter. Although the latter 
correlation yielded better agreement with the data than did the for
mer, it was still about 15 percent high. When the measured friction 
factors were used as input to the Petukhov-Popov equation, agree
ment between prediction and experiment to better than five percent 
was attained. This finding suggests that for a noncircular duct, the 
Petukhov-Popov equation be evaluated with the friction factor spe
cific to that duct. The present data also support the Nusselt number 
predictions of [2] obtained via finite-difference solutions of a modeled 
turbulent flow. 
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Analysis of Laminar Heat Transfer 
in Internally Finned Tubes with 
Uniform Outside Wall Temperature 
An analysis is presented for fully developed laminar conuective heat transfer in tubes 
with internal longitudinal fins and uniform outside wall temperature. The governing mo
mentum and energy equations were solved numerically, with the influence of fin conduc
tance accounted for by a single parameter. The distributions of fin temperature, fluid 
temperature and local heat flux (both at the fin and unfinned surfaces) are presented. 
These are shown to be strongly dependent on finned tube geometry and, in some cases, 
on the fin conductance parameter as well. Based on average heat transfer per unit area, 
the various fins proved more effective than the unfinned surfaces. Values for overall Nus-
selt number indicated significant heat transfer enhancement over smooth tube condi
tions. 

Introduct ion 
This work is a continuation of the analysis of laminar, fully devel

oped fluid flow and heat transfer in tubes with internal longitudinal 
fins. The results of earlier studies by the present authors and others, 
have included the velocity distribution and friction factor [1, 2], the 
temperature distribution and Nusselt number [3,4], and the influence 
of fin conductance on the heat transfer characteristics [5]. These heat 
transfer results corresponded to the wall condition of constant heat 
flux, axially, and uniform temperature, circumferentially. This 
boundary condition is relevant to many practical situations including 
electric heating, nuclear heating, and counter flow heat exchangers 
with equal heat-capacity rates for the two streams [6]. This paper 
presents heat transfer results corresponding to the second funda
mental wall condition, namely that of constant temperature axially 
as well as circumferentially, which has immediate applications for 
equipment such as condensers and evaporators. 

Several experimental investigations dealing with pressure drop and 
heat transfer in internally finned tubes have been reported. These 
studies have involved various geometries with both straight and 
twisted fins and a range of flow situations encompassing single and 
two-phase (boiling and condensation) flows. Most of the single phase 
studies have dealt with turbulent flow and only a few consider laminar 
flow [7-9]. Reference to the results of these three investigations will 
be made later, however it is important to state here that none of them 
provided experimental data corresponding to the present combination 
of flow and boundary conditions. 

The tube geometry used in this study is similar to the one used 
earlier by Soliman and Feingold [2,4]. A variable number of straight 
fins is evenly distributed around the circumference of the tube. Fin 
sides are radial flanks and the tips coincide with a circular arc con
centric with the axis of the tube. This geometry has the advantage of 
being close to real finned tube configurations while coinciding with 
the cylindrical coordinate system. Within the fins, the temperature 
is assumed uniform circumferentially, but variable in the radial di
rection. For the present study, the governing momentum and energy 
equations were solved numerically using a finite difference approach. 
Distributions of local heat flux at the tube wall and along the sides 
of the fins, as well as temperature distributions and overall heat 
transfer characteristics are presented. 

Analysis 
Due to geometrical symmetry of the flow domain as shown in Fig. 

1, solutions for the governing equations were sought only between 8 
= 0 and 8 = y. Assuming uniform fluid properties and negligible vis

cous dissipation within the fluid, the momentum equation reduces 
to 

r dr \ drj r2 d02 

ldp 

fidx 
(1) 

Nondimensionalizing, using quantities defined in the Nomenclature, 
results in 

R dR \ dRI 

1 d2U_ 

R2dfl2 ~ 
(2) 

Equation (2) was solved subject to the boundary conditions U = 0 on 
the solid walls, dU/dB = 0 on the symmetry lines, and dU/dR = 0 at 
the center-line of the tube. The resulting velocity distributions are 
functions of the number of fins M, relative fin height H, and half fin 
angle /3. The following range of geometrical parameters was cov
ered. 

4 < M < 32, 

0.2 < H < 0.8, and 

/3 = ir/60 rad (3 deg). 

The single /3 value represents a typical value for internally finned 
tubes already manufactured and tested [7,10]. 

The solution of equation (2) was obtained by finite differences using 
a grid with 20 subdivisions in the radial direction and ten subdivisions 
in the circumferential direction. The density of points was increased 
near the tube wall, fin side, and fin tip due to steep gradients at these 
locations. Trials with finer grids were conducted for different tube 
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geometries and the resulting changes in velocity values were too small 
to justify the increased computation cost. 

For a smooth tube with radius ro, the friction factor and Reynolds 
number are normally defined as: / = (—dP/dx)ro/(pub2), and Re = 
pUb(2ro)/n, respectively. In terms of mass flow rate m, these defini
tions take the form 

and 

/ = (ir2pr0
6/m2)(-dP/dx), 

Re = 2m/(7iro/t). 

(3a) 

(36) 

Equations (3) were used for correlating the friction factor results of 
internally finned tubes because they provide a basis for comparison 
with smooth tubes and a dimensionless measure of the influence of 
internal finning on the pressure gradient for the same ro, p, p., and m. 
The product /Re can be placed in the following dimensionless form 

/Re = (Tc/Af)(2/Uh), (4) 

where Af is the dimensionless flow area expressed as 

Af = a,/r0
2 = v - MP (1 - Ri2). 

Calculated results of/Re were compared with the analytical results 
reported by Soliman and Feingold [2] as an additional test for the 
adequacy of the present mesh size. This resulted in an agreement 
between the two values to within 1 percent for all tube geometries 
considered. The above numerical results were then used as input to 
the heat transfer problem. 

For a fully developed temperature profile and negligible axial 
conduction, the energy equation reduces to 

I d / dT] ld2T pcp dT 
r — \ + ~—zz = — ~ " — • (5) 

rdr\ dr) r2 dB2 kf dx 
In addition, the axially invariant temperature profile can be written 
in terms of dimensionless temperature as 

T(x, r, 8)-Tw 

#,«)=" qwM r0/kf 
(6) 

Using definitions (3, 4), and (6), equation (5) takes the following 
nondimensional form. 

\R—\+ 7 = /Re U<)> fo 
RdR\ dR] R2d82 

Thermal boundary conditions applicable to equation (7) are 

0 = 0 atf l = l , O < 0 <a, 

0 at 0 < R < 1, 8 = 0, 
d0_ 

dB' 

d 0 _ 

dB" 
0 at 0 < R < Ri, 8 = 7, 

(7) 

(8a) 

(86) 

(8c) 

dB dR \ dR 
at Ri <R<l,t •• a , 

and 

d0 

dR 
= 0 at R = 0. 

(Bd) 

(8e) 

Condition (8a) is a direct consequence of definition (6), while condi
tions (86, 8c), and (8e) are due to symmetries in the flow domain. 
Relation (8d) was obtained from a one-dimensional heat balance on 
the fin, where the fin conductance parameter (K), is defined as K = 
fikjkf. For the limiting case of infinite fin conductivity (i.e., 100 
percent fin efficiency), K approaches infinity and the temperature 
becomes uniform within the fin and equal to the base temperature 
Tw. Consequently, when solving for this limiting case, condition (8d) 
was replaced by, 

0 = 0 &tRi<R<l,B = a. 

As will be shown, this situation results in the best overall heat transfer 
performance for any tube geometry. 

In addition to the above boundary conditions, zero heat flux was 
assumed at the tips of the fins. In other investigations, this assumption 
was adopted for convenience, (e.g., Soliman [5] and Sparrow, et aj. 
[11]). The decision to use it here was made in order to establish a 
correspondence between the present results and those in [5], keeping 
in mind that it would cause a small decline in the predicted heat 
transfer performance because of the decrease in the effective heat 
transfer area. 

The solution of energy equation (7) together with boundary con
ditions (8) is subject to the three geometrical parameters M, H, and 
/3, in addition to the fin conductance parameter K. Since the evalua
tion of 4> depends on the bulk temperature </>b ' n the right hand side 
of equation (7), an iterative procedure was developed as follows. 

1 The values of 0 and the corresponding 0j, for the case of con
stant heat input axially and uniform temperature circumferentially 
were obtained by solving the applicable energy equation [5], which 
has the form 

1 d / dd>\ 1 d20 
\R—]+——• = fReV. 

RdR\ dRl R2d82 (9) 

The solution of (9), subject to boundary conditions (8), was performed 
numerically using the mesh described earlier. The results of this step 
served the following two purposes: (i) they provided a first trial for 
the solution of equation (7); and, (ii) they established further confi
dence in the adequacy of the chosen mesh since it was found that the 
computed values of <j>b were always within 1 percent of the analytical 
results [5]. 

2 The results of step (1) were substituted into the right hand side 
of equation (7), which was then solved numerically for new values of 
0. Based on these, a new value for 4>b was calculated and all results 
were again placed in the right hand side of equation (7). 

• N o m e n c l a t u r e . 

Af = dimensionless flow area of the tube, a.// 
ro2 

a/ = flow area of the tube 
cp = specific heat at constant pressure 
/ = friction factor, equation (3a) 
H = dimensionless fin height, h/ro 
h = fin height 
h = average heat transfer coefficient at 

solid-fluid interface 
K = fin conductance parameter, 0ks/kf 
kf - thermal conductivity of fluid 
ks = thermal conductivity of fin 
M = number of fin 
m = mass flow rate of fluid 
Nu = Nusselt number, equations (10) 
P = pressure 
Q = total heat transfer rate at solid-fluid in

terface 
q = average heat flux, QI[lM(<xr0 + h)] 
QB = local heat flux at unfinned surface 
q~B - average heat flux at unfinned surface 
qf = local fin heat flux 
q~f = average fin heat flux 

• qw = average heat flux at outer tube-wall, 
Q / ( 2 * T 0 ) 

R = dimensionless radial coordinate, r/ro 
Ri = dimensionless radial coordinate at tip of 

fin 
r = radial coordinate 
ro = radius of tube 
Re = Reynolds number, equation (36) 
T = temperature 
Tb - bulk temperature 
Tw = tube-wall temperature 

U = dimensionless velocity, u/[(ro2/p) 
(-dP/dx)] 

Ub — dimensionless bulk velocity 
u = axial velocity 
Ub = bulk velocity 
x = axial coordinate 
a = half the angle between the flanks of two 

adjacent fins 
/? = half the angle subtended by one fin 
7 = half the angle between the centre-lines 

of two adjacent fins 
8 = angular coordinate 
p. = dynamic viscosity 
p = density 
0 = dimensionless temperature, equation 

(6) 
0b = dimensionless bulk temperature 
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Fig. 2(a) Fin temperature and local heat flux distributions for SI = 8 and H 
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Fig. 2(c) Fin temperature and local heat flux distributions for Af = 8 and H Fig. 2(d) Fin temperature and local heat flux distributions for M- 24 and 
= 0.8 H = 0.8 

3 Step (2) was repeated until all values of 0 and <j>b converged to 
six significant figures. 

Finally, the heat transfer results were readily obtained from the 
converged solutions to the temperature fields. 

Results and Discussion 
Heat transfer results of both local and average nature were obtained 

for a wide range of finned tube geometries. A selected sample of the 
local distributions of fin temperature and heat flux, tube-wall heat 
flux, and fluid temperature is presented in Figs. 2-5. Values pertaining 
to the overall heat transfer characteristics are listed in Table 1, cov
ering the entire investigated range of geometrical and fin conductance 

parameters. As stated earlier, all the present results correspond to a 
half fin angle /3 = 7r/60 radians. 

Local Fin Temperature and Heat Flux. Local fin temperature 
and heat flux distributions corresponding to four selected tube 
geometries are presented in Figs. 2(a,b,c,d). Each graph shows (where 
practical) the plots corresponding to K = 1,2,5,10, and °°. The local 
heat flux is normalized using the average heat flux along the fin side 
(qf), while the local fin-to-base temperature difference is plotted 
relative to the bulk-to-base temperature difference. Attention is fo
cused first on heat flux distributions, followed by a discussion on 
temperature distributions. 

For tubes with a small number of short fins, the typical variation 
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9/a 
Fig. 3(a) Unfinrwd surface haat flux distribution for M = 8 

of local fin heat flux is as shown in Fig. 2(a) for the case M = 8 and H 
— 0.2. The heat flux increases from zero at the base to a maximum at 
the edge of the fin tip. The fin conductance parameter has only a very 
minor effect on the values of <?/•/<?/. For the same relative fin height, 
increasing the number of fins to M = 24 results in the heat flux dis
tribution shown in Fig. 2(b). Again, the value of K continues to have 
a negligible effect on the heat flux distribution, and most of the heat 
transfer occurs near the end of the fin. To comprehend the results of 
Figs. 2(a,b), we have to consider the velocity variation around the fin. 
At the corner formed by the fin and the tube-wall, the fluid velocity 
is very small resulting in small heat transfer coefficients and conse
quently small heat fluxes. As we move along the fin towards the tip, 
increasing velocities are encountered which contribute to an increasing 
heat flux with a maximum at the end of the fin. 

To complete the sample presentation of local fin heat flux, the 
distributions for tubes with long fins (H = 0.8) are shown in Fig. 2(c) 
for a small fin number (M = 8) and in Fig. 2(d) for a large fin number 
(M = 24). Figure 2(c) shows that for a small number of long fins, q/lqf 
starts from zero at the base, reaches a maximum almost midway along 
the fin, and then decreases as we move towards the tip. Again, this 
behaviour is a direct result of the velocity distribution. For this tube 
geometry, it was shown in [2] that in the bay between two adjacent 
fins, equivelocity lines form closed loops resulting in small velocities 
near the base and tip of the fin and a maximum around the middle. 
As the number of fins increases, the resistance to the flow between 
the fins increases and an increasing portion of the flowing mass is 
pushed towards the core area of the tube. The limiting case of a large 
number of long fins is exemplified by the results in Fig. 2(d) where 
only a small area around the tip of the fin is participating in heat 
transfer. 

One interesting deduction can be made from the above results 
concerning the hypothesis of a uniform heat transfer coefficient along 
the side of the fin. This assumption, often used for the evaluation of 
fin efficiency (e.g., [7]), would lead to a fin heat flux distribution 
starting from a maximum at the base and decreasing monotonically 
to a minimum at the tip. Since none of the considered tube geometries 
produced such a distribution, it is obvious that this assumption is 
inapplicable. A similar conclusion was reached by Sparrow, et al. [11] 
for shrouded fin arrays. 

The dimensionless temperature distributions within the fin for the 
above mentioned tube geometries are presented in the lower portions 
of Figs. 2(a-d). Consistently, the wall-to-fin temperature difference 
increases from zero at the base to a maximum at the tip. Also, at any 
location within the fin, the dimensionless temperature decreases as 
the fin conductance parameter increases up to the limiting case of K 
= °° at which (Tw - T)/(TW - Tb) = 0 everywhere within the fin. 
Comparing the results of Figs. 2(a) and 2(6), or those of Figs. 2(c) and 
2(d), we notice that the increase in the number of fins from M = 8 to 
M = 24 resulted in a decrease in the dimensionless temperatures. This 
is due to a corresponding increase in the value of (Tw — Tb), indicating 
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Fig. 5(a) Isotherms (Tw ~ T)/(TW - T b ) t o t M = 4, H = 0.2, and K = 5 Fig. 5(6) Isotherms (Tw - T)I(TW - Tb)forM = t, H = 0.8, and K = 5 

Table 1 Overall heat transfer results (/? = H-/60 rad) 

H 

0.2 

0.4 

0.6 

0.7 

0.8 

K 

1 
5 

10 
00 

1 
5 

10 
CO 

1 
5 

10 
CO 

1 
5 

10 
CO 

1 
5 

10 
CO 

M--

q//q 

1.616 
1.698 
1.709 
1.721 
1.451 
1.666 
1.699 
1.734 
1.233 
1.551 
1.606 
1.666 
1.032 
1.311 
1.352 
1.390 
0.846 
1.084 
1.113 
1.136 

= 4 
Nu 

3.792 
3.813 
3.816 
3.819 
4.454 
4.691 
4.729 
4.770 
6.650 
8.231 
8.557 
8.930 
8.579 

12.46 
13.48 
14.77 
9.254 

13.66 
14.77 
16.09 

M = 

Qf/<! 

1.698 
1.768 
1.778 
1.787 
1.493 
1.631 
1.651 
1.672 
1.311 
1.483 
1.509 
1.536 
1.140 
1.381 
1.422 
1.465 
0.913 
1.032 
1.036 
1.033 

= 8 
Nu 

3.834 
3.865 
3.870 
3.874 
4.480 
4.714 
4.749 
4.787 
7.689 
8.806 
8.978 
9.157 

14.59 
19.60 
20.23 
20.81 
17.56 
29.55 
32.29 
35.29 

M = 

§//<? 

1.560' 
1.594 
1.598 
1.603 
1.308 
1.345 
1.350 
1.356 
1.202 
1.232 
1.236 
1.240 
1.176 
1.200 
1.203 
1.206 
1.131 
1.175 
1.178 
1.180 

16 
Nu 

3.738 
3.763 
3.766 
3.770 
3.911 
3.999 
4.011 
4.023 
5.132 
5.322 
5.349 
5.376 
8.729 
9.055 
9.098 
9.143 

29.95 
31.43 
31.56 
31.68 

M = 

Qf/Q 

1.367 
1.378 
1.380 
1.381 
1.185 
1.-194 
1.195 
1.196 
1.123 
1.129 
1.130 
1.131 
1.107 
1.111 
1.112 
1.112 
1.096 
1.098 
1.098 
1.098 

24 
Nu 

3.674 
3.686 
3.688 
3.689 
3.718 
3.748 
3.753 
3.757 
4.095 
4.139 
4.145 
4.151 
5.232 
5.278 
5.284 
5.290 

11.97 
12.04 
12.05 
12.06 

M--

qt/q 

1.225 
1.228 
1.228 
1.228 
1.112 
1.114 
1.114 
1.115 
1.075 
1.076 
1.076 
1.076 
1.065 
1.065 
1.065 
1.065 
1.057 
1.057 
1.057 
1.057 

= 32 
Nu 

3.658 
3.659 
3.660 
3.660 
3.664 
3.673 
3.674 
3.676 
3.761 
3.772 
3.773 
3.775 
4.092 
4.101 
4.102 
4.103 
6.071 
6.078 
6.079 
6.080 

a drop in the overall effectiveness of the heat transfer surface. 
Local Unfinned-Surface Heat Flux. The variation of heat flux 

along the tube-wall between 0 = 0 and 8 = a (See Fig. 1) is illustrated 
in Fig. 3(a) for tubes with small M and in Fig. 3(6) for tubes with large 
M. Values of qB are nondimensionalized using the average un-
finned-surface heat flux qB. As a general trend, qslqn has a maximum 
value at 8 = 0 (midway between two fins) and decreases to a minimum 
at 6 = a (base of fin). This form of variation is expected since the fin 
base is surrounded by almost stagnant fluid. Another feature which 
prevails for all tube geometries is that the variation in qs becomes 
larger as K increases. This is also explainable since a higher K results 
in smaller fluid-to-wall temperature differences near the fin base and 
consequently a decrease in qs there. 

In regard to a possible assumption of uniform heat transfer coef
ficient along the unfinned surface, it is noted that this is valid only 
for tubes with a large number of long fins. This is evident from the 
results of Fig. 3(6) for M - 24 and H = 0.8, where 5B/<7B is almost 
uniform for all finite values of K. The reason for this is that for such 
geometries the fluid velocity in the gaps between the fins is so small 

that the dominant mode of heat transfer between the unfinned surface 
and the fluid is conduction. 

Local Fluid Temperature. The influence of internal finning and 
of the fin conductance parameter on the fluid temperature is pre
sented in Figs. 4(a,6). In these figures, the radial distributions of (Tw 

— T)/(TW — Tb) along the symmetry line 8 = 0 are plotted for the four 
tube geometries considered above. From our numerical results, we 
can also supplement the findings of Figs. 4 with the fact that the K-
effect on the temperature distribution along any angular position is 
similar in trend to that along 6 = 0. 

For tubes with short fins (H = 0.2), Fig. 4(a) shows that the fin 
conductance parameter has no effect on the dimensionless tempera
ture distribution. Values of (Tw — T)/(TW — Tb) decrease radially 
from a maximum at the center-line to zero at the tube wall. The only 
distinguished difference in distribution between small and large 
numbers of fins is that for a large number of fins (e.g., M = 24) the 
wall-to-fluid temperature difference in the gaps between fins drop 
to very small values. This is consistent with heat flux and fin tem
perature results presented earlier. 
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Dimensionless temperature distributions are markedly different 
for tubes with long fins (H = 0.8). First of all, for a small number of 
fins (M = 8), the fin conductance parameter has a strong influence 
on the radial distribution of (Tw - T)I(TW - T/,), as shown in Fig. 
4(6). At any value of K, the dimensionless temperature has two 
maximal values, one at the center-line of the tube and the second lo
cated somewhere in the gap between two fins. The global maximum 
can be either one of these two values depending on the magnitude of 
K. For a large number of fins, the radial temperature distribution 
takes on a completely different form as shown in Fig. 4(6) for M = 24. 
In the gap between two fins, the fluid-to-wall temperature difference 
is very small, and this difference increases to a maximum at the cen
ter-line of the tube. This form of temperature profile is attributed to 
the corresponding velocity distribution described earlier. The fin 
conductance parameter has no noticeable effect on the temperature 
distribution for this geometry. 

For completeness, the isotherms (Tw — T)/(TW — T),) were plotted 
over the whole flow domain and are shown in Fig. 5(a) for tubes with 
short fins and in Fig. 5(6) for tubes with long fins. The main distin
guishing features between the two cases is the existence of closed loops 
in Fig. 5(6). This is consistent with the results of Fig. 4(6), and also 
with the velocity results reported in [2] where closed loop equivelocity 
lines were shown to exist for these geometries. 

Overall Heat Transfer. The parameter which is commonly used 
as a measure of the overall performance of any heat transfer surface 
is the Nusselt number. In the present work, Nusselt number is defined 
as 

Nu = , where h = - — . 
kf Tw - Tb 

Substituting, we get 

and in dimensionless form 

Nu = - 2/06. (106) 

Definition (10) results in values for Nu which can be used for com
paring the average wall heat flux qw of different tubes (finned or 
smooth) at the same ro, kf, and (Tw — T/,). Thus, numerical values 
of Nu reflect influence of internal finning on the overall heat transfer 
performance. For smooth tubes, equations (10) reduce to the well 
known value Nu = 3.657. 

Calculated values of Nu are listed in Table 1 for the range of tube 
geometries, using K = 1,5,10, and <» for each geometry. As a general 
trend, values of Nu for all finned tubes exceed that of a smooth tube 
irrespective of the value of K. Of course, the magnitude of heat 
transfer enhancement over smooth tube conditions depends on M, 
H, and K. From the results of Table 1, we can easily see that for any 
tube geometry the value of Nu increases as K increases. Again, the 
extent of the if-influence on Nu depends on the tube geometry. For 
example, (Nu)K=i/(Nu)x=„ has the value 0.70 for M = 8 and H = 0.7, 
as compared to 0.99 at M = 16 and H - 0.2. It is also interesting to 
note that for any combination of H and K, the value of Nu first in
creases with an increase in M up to an optimum value after which any 
further increase in M will result in a decrease in Nu. The magnitude 
of M at which this optimum Nu occurs increases as the relative fin 
height increases. To help in visualizing this behaviour we should point 
out that for any combination of H and K, there are two limiting values 
of M at which Nusselt number approaches 3.657. These limiting 
values are M = 0 (smooth tube), and M = 60, which correspond to the 
situation where the gaps between the fins disappear and the geometry 
reduces to a smooth tube with a thick wall. Finally, comparing the 
present results with those reported by Soliman [5], we conclude that 
for all tube geometries Nusselt numbers for uniform temperature 
axially are lower than for uniform heat flux axially. For example, for 
K = oo, the present Nu results (25 cases) averaged 67 percent of those 
reported in [5] with a range of 26 to 84 percent. The corresponding 
ratio for smooth tubes is also 84 percent, hence it follows that en
hancement over smooth tube conditions due to internal finning is 

relatively less for uniform outside wall temperature than for the 
uniform heat flux boundary condition. The present variations of Nu 
with M, H, and K are fairly similar to those reported in [5]. A notable 
difference is that for a given H, the present Nu values peak at lower 
M values than in [5]. Optimal Nu values for the two boundary con
ditions occurred in the same general neighborhood — H = 0.8 for both, 
but M = 11 for the present results versus M = 16 for [5]. 

Another parameter relevant to the present geometry is the ratio 
q//q (included in Table 1) where q~f is the average heat flux at the sides 
of the fins and q is the overall average heat flux at the solid-fluid in
terface excluding the fin tips. This ratio serves as an indicator of the 
effectiveness of the fin as a heat transfer surface. As may be seen from 
these results in Table 1, for values of if up to and including 0.7, the 
fin surface is a more effective heat transfer surface than the tube-wall 
surface for the whole range of M and K considered. The same con
clusion is true for H = 0.8, except for K = 1 at M = 4 and 8. 

Concluding Remarks 
Earlier analyses of laminar, fully developed, forced convective heat 

transfer in internally finned tubes [3-5] were concerned with the wall 
condition of constant heat flux axially and uniform temperature cir-
cumferentially. The present analysis considers the second funda
mental boundary condition of an isothermal wall, both axially and 
circumferentially. The governing momentum and energy equations 
were solved numerically, taking into consideration radial conduction 
within the fins. Local and average heat transfer results were calculated 
for a combined range of relative fin heights (0.2 < if < 0.8), number 
of fins (4 < M < 32), and a half fin angle /3 = 7r/60 radians. For each 
tube geometry, the heat transfer performance was sought at different 
values of the fin conductance parameter K. The following conclusions 
can be drawn from the results of the present investigation. 

1 The distribution of local heat flux at the side of the fin and along 
the unfinned surface is strongly dependent on the values of M and 
H. The hypothesis of uniform heat transfer coefficient along the fin, 
often used for the calculation of fin efficiency, proved inapplicable 
for all geometries considered. Along the unfinned surface, this as
sumption is valid only for tubes with a large number of long fins (e.g., 
M = 24 and if = 0.8). 

2 The fluid temperature within tubes with short fins (if < 0.4) 
has a single maximum value located at the center-line, whereas with 
long fins the fluid temperature is characterized by the existence of 
closed loop isotherms. 

3 The fin side is a more effective heat transfer surface than the 
unfinned tube-wall. 

4 Internal finning provides substantial heat transfer enhancement 
over smooth tube conditions. Nusselt numbers (equation (10)) are 
dependent on M, H, and K and exceed 3.657 by up to a factor of close 
to 10. The present values of Nu are consistently lower than their 
counterparts for the boundary condition of uniform axial heat input 
[5]. 

Unfortunately, comparison of the present results with experimental 
results available in the literature was, not possible due to lack of 
common geometrical, flow, or boundary conditions. As pointed out 
earlier, only three experimental studies [7-9] have dealt with laminar 
flow in internally finned tubes. Watkinson, et al. [7] used several tubes 
with spiral and straight fins and applied uniform temperature at the 
outer wall by a steam jacket. However, they presented average heat 
transfer results over a certain tube length without distinction between 
the developing and fully developed regions. The finned tubes used 
by Soliman and Feingold [8] all had spiral fins. Marner and Bergles 
[9] reported local heat transfer data for different augmented test 
sections corresponding to the two fundamental wall conditions. 
However, their large scale constant wall temperature tests did not 
involve tubes with straight fins. The need for more experimental re
sults at specified wall conditions, flow situations (developing and fully 
developed), and using a wide range of tube designs is quite ob
vious. 

Finally, it is appropriate to emphasize that whereas the present 
study has dealt solely with heat transfer, the advantage of enhanced 
heat transfer over smooth tube conditions is always accompanied by 
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the penal ty of higher pressure drop [2], T h e presen t results plus those 

in [5] are being examined to de t e rmine opt imal configurat ions u n d e r 

a var ie ty of opera t ing condi t ions a n d objectives. T h i s op t imiza t ion 

s t u d y is expec ted t o be avai lable for pub l ica t ion shor t ly . 
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Laminar Heat Transfer in an 
Externally Finned Circular Tube 
An analysis has been carried out for laminar heat transfer in a circular tube subjected to 
an axially periodic variation of the external heat transfer coefficient (or of its dimension-
less counterpart, the Biot number). This thermal boundary condition serves to model flow 
in a tube fitted with a regularly spaced array of annular fins. It was found from numerical 
solutions that external finning yields substantial heat transfer enhancement compared 
with an unfinned tube, especially when the Biot number of the unfinned tube is low. The 
degree of enhancement is quite insensitive to the period of the Biot number variation pro
vided that the overall proportions of the unfinned and finned surface are maintained and 
the Biot number level is also maintained. An increase in the interfin spacing tends to di
minish the enhancement. A constant-Biot-number model intended to approximate the 
heat transfer results for the periodic-Biot-number case was devised and tested. The pre
dictions of this simplified model are especially accurate at low Biot numbers. The results 
of the laminar flow analysis have suggested ways of modeling turbulent heat transfer in 
externally finned tubes. 

Introduction 
There are many engineering applications where a fluid flowing in 

a tube is subjected to a thermal boundary condition which varies in 
a periodic manner along the flow direction. Perhaps the most visible 
application is the externally finned tube, where the fins are uniformly 
spaced annular or square plates affixed to (or integral with) the out
side surface of the tube. Finned tubes of this type are encountered, 
for example, in residential or institutional space heating. 

Each fin can be regarded as an enhancement device which brings 
about a local increase of the heat transfer coefficient for convective 
exchange between the fin base area and the ambient. This view can 
be illustrated by noting that the fin heat transfer rate Q/ can be related 
to the fin base area Afi, and the temperatures T/i, and T™ at the fin 
base and in the ambient 

Qf = h</>Afb(Tfb - T„) (1) 

where (j> is the fin effectiveness and h is the heat transfer coefficient 
which would prevail at the outer surface of the tube in the absence 
of the fins. Under normal conditions, the numerical value of <j> is very 
much larger than one. The quantity hij> can be regarded as an effective 
heat transfer coefficient between the fin base and the ambient. 

The foregoing discussion serves to motivate a model for analyzing 
the heat transfer characteristics of a forced convection flow in a pipe 
having a regularly spaced array of fins attached to its outer surface. 
The pipe flow can be regarded as being subjected to an external con
vective boundary condition, with an external heat transfer coefficient 
which varies periodically along the flow direction. The periodic 
variation will be idealized here as a succession of high and low values, 
respectively modeling the successive finned and unfinned portions 
of the tube (see Fig. 1, lower diagram) . This model is a limiting case 
in that it does not take account of the possible smoothening effects 
of axial conduction in the tube wall. The ramifications of accounting 
for axial conduction will be discussed at the end of the paper. 

It appears that pipe flows subjected to an axially periodic external 
heat transfer coefficient have not heretofore been analyzed in the 
published literature. Recently, problems involving either axially pe
riodic prescribed wall temperature or axially periodic prescribed heat 
flux have been studied [1], but the methods developed for those cases 
do not apply to the case under consideration here. In the absence of 
a viable analytical method, a numerical method has been em
ployed. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 14,1980. 

The solutions are carried through the entire thermal entrance re
gion and are terminated when thermally developed conditions are 
attained. In this regard, it should be noted that the thermally devel
oped regime in an axially periodic system is altogether different from 
that in a conventional pipe or duct flow, where the heat transfer 
coefficient and the shape of the temperature profile are axially un
changing [2]. For the present case, thermal development was defined 
in terms of average heat transfer coefficients for the successive finned 
and unfinned portions of the tube. When each of these average coef
ficients attained a constant value, independent of axial position, 
thermal development was regarded as having been attained. 

The solutions were carried out for laminar flow. For each solution, 
a minimum of four independent dimensionless parameters must be 
specified. In view of the large number of parameters and of the ex
treme demands of the computational task, a full parametric explora
tion is unrealistic. Rather, the parameters were varied systematically 
in order to reveal the key trends in the results. In addition, an ap
proach was made to correlating the heat transfer characteristics for 
finned and unfinned tubes. In this connection, supplementary finite 

ar 

h9 

Fig. 1 Schematic of an externally finned tube (upper diagram) and model 
adopted for the external heat transfer coefficient (lower diagram) 
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difference solutions were carried out for tubes with uniform external 
heat transfer coefficients (i.e. , no fins). 

Analysis 
The description of the analysis is facilitated by reference to Fig. 1. 

The upper portion of the figure is a schematic diagram of an externally 
finned tube showing the coordinates and dimensional nomenclature, 
while the lower portion displays the model adopted for the heat 
transfer at the outside surface of the tube. As discussed earlier, the 
external heat transfer coefficient he at the successive unfinned and 
finned portions of the tube is modeled as a periodic distribution of 
low and high values, respectively designated as h\ and hi in Fig. 1. 

In considering the analysis of the tube flow, it may be noted that 
the adopted numerical solution method can deal equally well with the 
heat transfer problem for a developing velocity profile or for a fully 
developed velocity profile. Since the former situation involves the 
specification of an additional prescribable parameter (the Prandtl 
number), over and above the basic set of four parameters, the present 
solutions will be carried out for a hydrodynamically developed (low. 
For this same reason, the thermal resistance of the tube wall will not 
be dealt with explicitly but rather will be regarded as being accounted 
for in hi and hi. 

With the foregoing as background, the problem to be treated here 
will now be defined. We consider a fluid entering a tube with a fully 
developed laminar velocity profile and a uniform temperature T0. In 
the course of its flow through the tube, the fluid exchanges heat with 
an external environment at temperature T„ via a streamwise-periodic 
external heat transfer coefficient he. The goal of the work is to de
termine the heat transfer rates which occur under the influence of the 
periodic external boundary condition and, if possible, to relate these 
results to those for tube flows with a streamwise-uniform external heat 
transfer coefficient. 

To arrive at a formulation involving the minimum number of pa
rameters, the following dimensionless variables are introduced 

X = (x/R)/Pe, T) = r/R, (T - T0)/{T„ - T„) (2) 

where Pe = UD/a is the Peclet number. With these variables, the 
streamwise lengths s and t of Fig. 1 which define the successive regions 
of low and high external heat transfer coefficient become, in dimen
sionless terms, 

a = (s/fl)/Pe, T = (£/R)/Pe (3) 

Furthermore, the dimensionless counterparts of the external heat 
transfer coefficients hi and hi (the successive low and high values) 
are Biot numbers1 Bii and Bi2 

Bix = htRlk, Bi2 = h2R/k (4) 

1 The characteristic dimensions in the Biot number can be selected with a 
certain degree of arbitrariness. Since the Biot number represents a ratio of 
thermal resistances, the radius R was selected rather than the diameter D be
cause it is believed that R/k is a better measure of the thermal resistance of the 
tube flow than is D/k. 

The four dimensionless quantities a, T, Bii, and Bi2 constitute the four 
parameters which must be prescribed for each solution. 

With the Poiseuille velocity distribution u/U = 2(1 — ?;2) and with 
the variables of equation (2), the dimensionless energy equation can 
be written as 

(1 - Ti2)bO/bX = (l/i/)d/di7 [iii.be/bti)] (5) 

The axial diffusion term has been omitted because the Peclet number 
range of interest here exceeds the threshold (Pe = 50) below which 
axial diffusion has a detectable effect. In addition, equation (5) in
cludes the assumptions of constant fluid properties and negligible 
viscous dissipation. 

At the tube wall (r = R) , the convective interchange between the 
tube flow and the ambient takes the mathematical form 

-kbT/br = he(T-T«,), or -bd/bi] = iheR/k)id - 1) (6) 

The periodic boundary condition involving Bii and Bi2 then be
comes 

-dO/dri = Bii(0 - 1), ni<r + T)<X <ni<r + T) + o (7) 

-bQ/br, = Bi2(0 - 1), nia + r) + a<X < (n + l)(<r + T) (8) 

in which n = 0, 1, 2, At the tube inlet (x = 0) , the T = TD 

boundary condition becomes 8 = 0 in the transformed variables. 
The equations set forth in the preceding paragraphs were solved 

by adapting the Patankar-Spalding method [3]. This is a fully implicit 
finite difference scheme which marches the solution steadily along 
the tube, starting at x = 0 . The computational task required to obtain 
the solutions was especially demanding because of the nature of the 
boundary conditions (7) and (8). In particular, the periodic abrupt 
changes in Bi require a fine distribution of grid points in both * and 
r for their accommodation. The effects of these abrupt changes are 
more strongly felt in the initial portion of the tube, where the largest 
differences prevail between the fluid bulk temperature Tb and the 
ambient temperature T„. Consequently, it was necessary to use ex
tremely small axial steps in that region. 

The grid was laid out with 220 points spanning the cross section 0 
<ii <1, with a greater concentration near the tube wall. For the axial 
grid layout, the computations were begun with a uniform step size of 
AX = 10~6 or 0.5 x 10~6 depending on the parameters. This step size 
was maintained until the rate of axial change had diminished to a level 
at which the step could be safely increased (usually by a factor of two). 
The decision to increase the step size was made by examining average 
Nusselt numbers for the successive low- and high-Bi segments of the 
tube. A change in step was made when the resulting segment-to-seg
ment differences in the average Nusselt numbers were less than one 
percent, both for the low-Bi and high-Bi segments. Subsequent step 
size increases were made using the same criterion. 

The streamwise marching of the solution was continued until the 
aforementioned average Nusselt numbers for the low and high-Bi 
segments became constant, independent of axial position. This oc
curred in the range of X values between 0.2 and 0.4, depending on the 
parameters. The number of axial grid points ranged from 50,000 to 

..Nomenclature-
Bi = external Biot number, heR/k 
Bii = Biot number for unfinned surface, 

hiR/k 
Bi2 = Biot number for finned surface, 

h2R/k 
cp = specific heat 
D = tube diameter 
he = external heat transfer coefficient 
hi = coefficient for unfinned surface 
hi = coefficient for finned surface 
k = thermal conductivity 
rh = mass flow rate 

Nu = local Nusselt number for tube flow 
Nui = average tube-side Nusselt number for 

unfinned segment 
Nu2 = average tube-side Nusselt number for 

finned segment 
Pe = Peclet number, UD/a 
Q = rate of heat transfer between x = 0 and 

x = x 
Qmax = maximum heat transfer rate, 

mcp(T„ - T0) 
R = tube radius 
r = radial coordinate 
s = interfin spacing 
T = temperature 
Tbx = local bulk temperature 
T 0 = entering fluid temperature 

T-, = ambient temperature 
t = fin thickness 
u = axial velocity component 
u = mean velocity 
X = dimensionless axial coordinate, 

(x/fl)/Pe 
x = axial coordinate 
a = thermal diffusivity 
?7 = dimensionless radial coordinate, r/R 
6 = dimensionless temperature, 

(T - T„)/(T„ - T0) 
a = dimensionless interfin spacing, 

(s/fi)/Pe 
T = dimensionless fin thickness, (t/R)/Pe 
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95,000, corresponding to total numbers of grid points (radial times 
axial) ranging from about ten to twenty million. 

To verify the solution methodology, comparisons were made with 
the eigenvalue solution of [4] for constant Biot number. With only ten 
eigenvalues available, that solution is limited to the downstream 
portion of the tube. In that region, the local Nusselt numbers from 
the present solutions agreed to within 0.01 percent with those from 
the eigenvalue solution. 

The main result that will be extracted from the solutions is the rate 
of heat transfer from the fluid flowing in the tube. If m denotes the 
mass rate of fluid flow and Tbx is the bulk temperature at a streamwise 
station x, the rate of heat transfer for the section of the tube between 
x = 0 and x = x is 

Table 1 Parameter values 

Q = rhcp(Tbx - T0) (9) 

A dimensionless representation for Q can be obtained by noting that 
the maximum possible rate of heat transfer occurs when Tbx = T„, 
a condition which is fulfilled as x ~* <°. If 

then 
Qmax = m c p ( T „ - T 0 ) 

Q/Qmax = (Tbx ~ T o ) / ( T . - T„) 

(10) 

(11) 

In the main, the results will be reported in terms of the Q/Q 
max ratio. 

The dimensionless bulk temperature appearing in equation (11) was 
evaluated from its definition as 

: = 2 f (u/u)dridr) (12) 

Average Nusselt numbers for the successive low and high Biot 
number sections (1 and 2, respectively) of the tube were determined 
from 

Nux = hiD/k, hi C qdxl f {Tm Tbx)dX (13) 

Nu. = h2D/k, h2 = J^ qdXJ j * (Twx - Tbx)dX (14) 

The integrals appearing in the numerators and denominators of the 
h equations respectively yield the average heat flux and average 
wall-to-bulk temperature difference per section. Values of Nui and 
Nu2 were determined at all of the successive sections. 

Results and Discussion 
As was noted earlier, the superabundance of parameters and the 

very lengthy computations make it unrealistic to undertake a full
blown parametric investigation. Rather, a sequence of typical cases 
was selected in order to illuminate the heat transfer response to 
variations of the parameters. A listing of the investigated cases 
characterized by a periodically varying external heat transfer coeffi
cient is presented in Table 1. Some finite difference solutions were 
also performed for the case of uniform external Biot number; these 
will be described shortly. 

With respect to Table 1, case 1 may be regarded as a baseline case. 
It is characterized by an interfin spacing that is three times the fin 
thickness and by an effective fin heat transfer coefficient that is fifty 
times that of the external coefficient on the unfinned surface of the 
tube. Case 2 explores the effect of changing the general level of the 
external coefficient (i.e., of both hi and /12) while maintaining the same 
fin thickness, the same interfin spacing, and the ratio of hi to h\. The 
intent of case 3 is to study the effect of changing the hilhi ratio. In 
case 4, the interfin spacing is increased to seven times the fin thickness 
(compared to three times for the baseline case). 

All of the foregoing cases correspond to a fixed dimensionless fin 
thickness. For case 5, both the fin thickness and the interfin spacing 
are reduced to half their former values; this changes the spatial period 
of the variation but leaves unchanged the actual extent of finned and 
unfinned surfaces. For this same fin arrangement, case 6 re-examines 
the effect of changing the level of the external resistance, this time 
to sufficiently low values so that the external resistance is controlling, 

Case 

1 
2 
3 
4 
5 
6 

T 

lO- 1 

1 0 - 4 
10-* 
10-* 

0.5 X lO"4 

0.5 X 10"4 

a 

3T 
3 T 
3T 
IT 
3T 
3T 

Bii 

1 
5 
1 
1 
1 

0.1 

Bi2 

50 
250 

20 
50 
50 

5 

Bi (equation (15)) 

53/4 
285/4 

23/4 
57/8 
53/4 
5.3/4 

as would occur with an internal liquid flow and an external gas 
flow. 

To complement and provide perspective for the results of cases 1-6, 
finite difference solutions based on a constant Biot number were 
carried out. These included Biot numbers of 0.1,1, and 5, which cor
respond to unfinned-tube counterparts of cases 1-6. Also included 
were Biot numbers given by 

Bi = (o-Bii + TBi2)/(<r + r) (15) 

These Biot numbers correspond to the spatial mean of Bii and Bi2. 
As an alternative to the spatial-mean Biot number of equation (15), 

a force-fit approach might have been taken. In such an approach, a 
succession of constant Biot number solutions would have been run 
until a Bi value is found which yields a satisfactory fit with the results 
of the variable Biot number case in question. This approach is ex
tremely costly with regard to computer time. It would have practical 
merit only if the force-fit Biot nunbers could be correlated with Bii, 
Bi2, a, and T. The existence of such a correlation can only be explored 
by solving a larger number of cases than has been considered here. For 
this reason, the alternate approach was not employed. 

As noted at the end of the preceding section, the main focus of the 
presentation of results will be the rate of heat transfer Q between x 
= 0 and any streamwise station x, with the ratio Q/Qmax being used 
to obtain a dimensionless representation. These heat transfer results 
will be presented from two distinct perspectives. The first focuses on 
the relationship between the results for streamwise-periodic Bi and 
those for uniform Bi. Comparisons will be made which show the degree 
of heat transfer enhancement due to finning. Other comparisons will 
illustrate how well the results for periodic Bi can be approximated by 
those for uniform Bi. In the second part of the presentation, the Q/ 
Qmax results for the various cases 1-6 of Table 1 will be compared 
among themselves in order to illustrate the role of the parameters. 

Representative results for the average heat transfer coefficients for 
the successive finned and unfinned portions of the tube will also be 
presented in the form of axial distributions. These distributions will 
provide perspective on the length of the thermal entrance region. 

Relationship between results for periodic and constant Bi. 
Figures 2-6 have been prepared to show the relationship between the 
Q/Qmax results for streamwise-periodic Biot number and for constant 
Biot number. In each figure, the periodic Biot number results are 
portrayed by a solid line, while those for constant Biot number are 
drawn as dashed lines. The lower of the constant Biot number lines 
corresponds to the value of the Biot number Bii on the unfinned 
portions of the tube. The extent to which the finned-tube line lies 
above this lower line indicates the degree of heat transfer enhance
ment achieved by finning. 

The upper of the constant Biot number lines corresponds to the 
spatial mean of Bii and Bi2 as given by equation (15). In the absence 
of solutions for the periodic case, heat transfer results corresponding 
to this type of average Biot number might be considered as a first 
approximation for those for a periodic Biot number. The comparisons 
presented in Figs. 2-6 enable conclusions to be drawn about the 
quality of the approximation. 

In all of these figures, Q/Qmax is plotted as a function of the di
mensionless streamwise coordinate (x/R)/Pe. Figure 2 conveys results 
both for cases 1 and 5 since the constant Bi comparison curves for both 
these cases are the same. Results for cases 2,3,4, and 6 are presented 
separately in Figs. 3-6. 

If attention is first turned to Fig. 2, it is seen that there is substantial 
heat transfer enhancement due to external finning. The enhancement, 
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which can be identified by the vertical separation distance between 
the solid line for the finned tube case and the lower dashed line for 
the unfinned tube, tends to diminish somewhat with increasing 
downstream distance (i.e., for longer tubes). This trend is physically 
plausible and reflects the fact that the fluid tends toward thermal 
saturation (i.e., Tbx -* TJ) as it flows through the tube. The general 
level of heat transfer enhancement in evidence in the figure is in the 
range of two to four times that for the unfinned case. These findings 
hold for both cases 1 and 5, which differ with respect to the streamwise 
period of the Biot number variation but have identical finned and 
unfinned surface areas and identical Biot number levels. 

The next issue to be addressed in Fig. 2 is the matter of how well 
the results for the finned tube can be approximated by the results for 
a constant Biot number based on the spatial average of Bii and Bi2. 
In considering this issue, it may be noted that the Q/Qmax curve for 
the finned tube case is not altogether smooth owing to the periodic 
rapid changes of the external heat transfer coefficient. The departures 
from smoothness are illustrated for case 1 in the figure. As can be seen 
there, the non-smoothness is confined to the most upstream portion 
of the tube and dies away with increasing downstream distance. The 
nonsmoothness can be very effectively smoothed in the mean by 
passing a curve through the Q/QmmL values at the successive midpoints 
of the unfinned sections, as is illustrated by the short-dashed line in 
Fig. 1. From now on, only smoothed curves will be considered. 

The results for cases 1 and 5 are so close that they bear a common 
relationship to the candidate constant-Biot-number approximating 
curve (the comparison between cases 1 and 5 will be elaborated later). 
For these cases, the candidate constant Biot number is ((3)(1) + 
(l)(50))/(3 + 1) = 53/4. As seen in the figure, the approximating curve 
overestimates the heat transfer for the finned tube. The greatest ov-

(X/R)/Pe 

Fig. 5 Relationship between heat transfer results lor axially periodic and 
axially uniform Biot number, case 3 

0.01 
0.001 0.01 0.1 

IX/R)/Pe 
Fig. 6 Relationship between heat transfer results for axially periodic and 
axially uniform Biot number, case 4 

erestimation occurs in the immediate neighborhood of the heated 
inlet, and thereafter the approximating curve is increasingly more 
accurate. For example, at axial stations beyond the point where Ql 
Qmax ~ 0.1, the approximating curve is accurate to 20 percent and 
better, and ten percent accuracy is achieved at the point where QIQma*. 
- 0 . 5 . 

The less than complete success of the constant-Biot-number ap
proximating curve is due to the fact that the thermal resistance of the 
tube flow (i.e., the tube-side resistance) is not included in the aver
aging process used to determine the candidate constant Bi (see 
equation (15)). The omission of such thermal resistances was inten-
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tional in that such information would not be known in the absence 
of detailed solutions of the finned-tube problem. Rather, a candidate 
constant Biot number was sought which is based only on a priori 
known information, as in equation (15). 

Attention may now be turned to Fig. 3 (i.e., to case 2), the Biot 
number values for which are greater than those of Fig. 2 by a factor 
of five. Inspection of Fig. 3 shows that finning gives rise to only modest 
enhancement in this case. This is because in the presence of relatively 
high external heat transfer coefficients, the thermal resistance of the 
tube flow tends to play an important role. In particular, the effect of 
a decrease in external resistance, as occurs when fins are employed, 
is muted by the relatively large tube-side resistance. If the Biot 
number of the unfinned tube were very high, then finning would have 
essentially no effect on the heat transfer. As before, Fig. 3 also shows 
that the greatest enhancement occurs for relatively short tubes; the 
enhancement is about 40 percent when Q/Qmax ~ 0.1 and 15 percent 
when Q/Qmax ~ 0.5. 

The candidate constant-Biot-number approximation, which cor
responds to Bi = 265/4, yields results whose accuracy is similar to that 
in evidence in Fig. 2. For Biot numbers much larger than those of Fig. 
3, it is expected that all three curves would be nearly coincident and 
would approximate that for uniform wall temperature. 

As a study in contrasts with respect to Fig. 3, the results for case 
6 are presented in Fig. 4. Case 6 corresponds to a relatively low value 
of Bii, so that the external resistance controls the rate of heat transfer. 
Therefore, the diminution of the external resistance which occurs 
when fins are employed should have a significant effect on the heat 
transfer, and that this is so can be verified by examination of Fig. 4. 
Heat transfer enhancement by an order of magnitude is in evidence 
in the figure. 

The figure also shows that the constant-Biot-number approxi
mating curve (Bi = 5.3/4) yields results of very high accuracy in this 
case. This is because the omission of the tube-side resistance in the 
evaluation of the candidate constant Bi value (equation (15)) ceases 
to be an approximation when the tube-side resistance is small. Thus, 
the constant Biot number model serves as an altogether satisfactory 
means of obtaining heat transfer results for periodically varying Bi, 
when Bi is small. 

Although the foregoing findings were obtained for laminar tube 
flows, they suggest expectations for turbulent tube flows. In general, 
because of the higher heat transfer coefficients, the tubeside resistance 
of a turbulent flow is substantially lower than that of a corresponding 
(same fluid, same tube diameter) laminar flow. Therefore, in the case 
of a turbulent tube flow, the likelihood that the external resistance 
controls the heat transfer is greater than that for a laminar tube flow. 
Consequently, the characteristics in evidence in Fig. 4 should be ap
plicable to turbulent tube flows, namely, substantial enhancement 
due to finning and accurate predictions of finned-tube heat transfer 
by a constant Biot number model. 

A further exploration of the effect of Biot number can be made by 
examining Fig. 5, where results are shown for case 3. To place these 
results in perspective, they may be compared with those for case 1 
(Fig. 2). The specified conditions (Table 1) for the two cases differ only 
in that Bi2/Bii = 50 for case 1 while Bi2/Bii = 20 for case 3, with Bii 
being the same; the geometrical parameters are also the same. For 
these conditions, it is reasonable to expect that in case 3 the heat 
transfer enhancement due to finning will be less than that in case 1. 
On the other hand, since Bii and Bi2 are less different in case 3 than 
in case 1, a constant Biot approximation is expected to be more ac
curate for the former than for the latter. 

These expectations may be appraised by examining and comparing 
Figs. 5 and 2. From the comparison, it is seen that both expectations 
are qualitatively fulfilled, but certain clarifying comments are in order. 
The first is that the degree of heat transfer enhancement is only 
modestly reduced as Bi2/Bii is decreased from 50 to 20 (the ratio of 
Qfinned to Qunfinned is reduced by 10 to 15 percent). This insensitivity 
can be attributed to the control exercised by the tube-side resistance 
when Bi2 becomes large. The second observation is that the con
stant-Biot-number approximating curve for case 3 is accurate to 15 
percent and better for Q/Qmnx ^ 0.1. 

Attention may next be turned to geometry effects. It was already 
shown in Fig. 2 (cases 1 and 5) that the period of the streamwise 
variation plays a minor role as long as the actual amount of finned and 
unfinned surface remains the same. Another geometrical issue is 
considered in Fig. 6, where results for case 4 are presented'. For this 
case, the interfin spacing is seven times the fin thickness, in contrast 
to case 1 where the spacing is three times the thickness. The Biot 
numbers Bii and Bi2 are the same in both cases. 

Comparison of Figs. 2 and 6 shows that the greater interfin spacing 
and the consequent decrease in the amount of tube surface that is 
finned diminishes the enhancement due to finning. Thus, the ratio 
of Qfmned to Qunfinned for case 4 is 15 to 25 percent lower than for case 
1. Notwithstanding this, enhancements on the order of a factor of two 
are in evidence in Fig. 6. The accuracy of the constant-Biot-number 
approximating curve for case 4 is not very satisfactory, the error being 
about 40 percent at QIQmex ~ 0.1. Thus, when the interfin spacing is 
relatively large, the linear surface area weighting of Bii and Bi2, as 
employed in equation (15), tends to give too much weight to the fin 
(i.e., to Bi2). 

The main findings obtained from Figs. 2 to 6 will be reassembled 
in the Concluding Remarks section at the end of the paper. 

Comparisons among Finned-Tube Results. The presentation 
and discussion of the previous section was focused on establishing 
relationships between finned-tube and unfinned-tube heat transfer 
results. Attention is now focused on comparisons among the finned-
tube results themselves. 

Biot number effects for a fixed geometry are shown in Figs. 7 and 
8. In Fig. 7, the geometry is defined by a dimensionless fin thickness 
T of 10 - 4 and a dimensionless spacing a = 3r. For Fig. 8, T = 0.5 x 10 - 4 

and a = 3T. 

For the discussion of Fig. 7, it is convenient to regard case 1 as a 
baseline case. Compared with case 1, the higher Biot numbers of case 
2 (higher by a factor of five) lead to modest increases in heat trans
fer—about 30 percent for Q/Qma* ~ 0.1 and about ten percent for 
Q/Qmax ~ 0.5. Similarly, the reduction of Bi2 from 50 to 20 (case 1 to 
case 3) causes only a moderate heat transfer response. This lack of 
sensitivity may be rationalized by noting that all the Biot numbers 
that pertain to Fig. 7 are in the intermediate and high range, signalling 
the presence of a significant tube-side resistance. It is the tube-side 
resistance that mutes the heat transfer response to changes in Biot 
number. 

In contrast, Fig. 8 displays a substantial heat transfer response to 
Biot number changes.2 This figure corresponds to the same extent 
of finned and unfinned surfaces as Fig. 7 but to a different period of 
the Biot number variation. The reason for the sensitivity evidenced 
in Fig. 8 is the relatively low value of Bii for case 6. This low Bii value 
means that the external resistance controls the heat transfer, so that 
changes of external resistance have a strong impact. 

Changes in the geometrical aspects of the imposed periodic Bi 
variation are considered in Fig. 9. All cases appearing in this figure 
have the same Bii and Bi2 values. The results for cases 1 and 5 have 
already been interpreted as indicating that the heat transfer is not 
very sensitive to the period of the imposed Bi variation, provided that 
the extent of the finned and unfinned areas remain unchanged. The 
case with the shorter period, case 5, displays slightly higher rates of 
heat transfer. For case 4, compared with case 1, the extent of the 
finned surface is reduced by a factor of two. The heat transfer drops 
moderately—by 15 to 25 percent. At higher levels of Biot number, the 
reduction in fin coverage would have had a lesser effect, while a much 
greater effect would have been registered at low levels of Biot 
number. 

Segment-Averaged Nusselt Numbers. Average heat transfer 
coefficients for the successive finned and unfinned portions of the tube 
were evaluated in accordance with equations (13) and (14). Repre
sentative results, corresponding to case 1, are presented in Fig. 10. In 
the figure, Nui denotes the average Nusselt number for the unfinned 

2 The Biot number changes in Fig. 8 are not quite the same as those of Fig. 
7, but this does not affect the essential trends. 
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Fig. 7 Comparisons among heat transfer results for axlally periodic Blot 
number; fixed geometry cases 1, 2, and 3 
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Fig. 8 Comparisons among heat transfer results for axially periodic Biot 
number; fixed geometry cases 5 and 6 

segments of the tube and NU2 denotes the average Nusselt number 
for the finned segments. These values were plotted at the respective 
mid-points of the successive segments, and then the plotted points 
were interconnected with a smooth curve to provide continuity. Also 
shown in the figure, for reference purposes, are the local Nusselt 
numbers Nu for the unfinned tube for constant Biot numbers Bi = 
1 and 53/4 

The figure shows that the average Nusselt numbers for the finned 
portions of the tube are very much higher (by an order of magnitude) 
than those for the unfinned portions. Both Nui and Nu2 decrease with 
increasing downstream distance, and finally level off in the neigh
borhood of (x/fl)/Pe ~ 0.1. Thereafter, Nut and Nu2 are constant, 
thereby signalling the attainment of the periodic thermally developed 
regime as discussed in the Introduction. 

The Nu versus x distributions for the constant Biot number cases 
Bi = 1 and 53/4 lie between the Nui and Nuj curves, but no clear re
lationship is apparent. The fact that Nu2 is much higher than the 
constant-Biot-number Nusselt number is the result of the substan
tially higher heat transfer rates at the finned sections. These same 
high heat transfer rates are responsible for the low values of Nui, since 
the fluid arriving at an unfinned section has, in effect, been highly 
preheated (or precooled). 

It is uncertain how information about Nui and Nu2, if available, 
might be useful in practical design calculations. For this reason, the 
axial distributions of Nui and Nu2 are not presented here for the other 
cases. However, for completeness, the fully developed values are listed 
in Table 2. 
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Fig. 9 Comparisons among heat transfer results for axially periodic Biot 
number; variable geometry cases 1, 4, and S 
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Fig. 10 Representative average heat transfer coefficients for successive 
finned and unfinned portions of the tube, case 1 

Concluding Remarks 
The main findings which have emerged from the presentation of 

results will now be brought together. It was found that heat transfer 
enhancement due to external finning is greatest for short tubes and 
diminishes as the tube length increases. Enhancements in the range 
of two to four times the unfinned-tube heat transfer were typically 
encountered. 

When the Biot number of the unfinned tube is relatively high, only 
modest heat transfer enhancement due to finning occurs. On the other 
hand, for low values of the unfinned-tube Biot number, there are great 
possibilities for enhancement. The degree of enhancement is little 
affected by a change in the period of the Biot number variation when 
the proportions of finned and unfinned surfaces are maintained for 
fixed values of Bii and Bi2- If the interfin spacing is increased (re
sulting in a decrease in the finned surface), the enhancement'de
creases, with the extent of the decrease being affected by the Biot 
number. 

With a view to finding a means of circumventing the lengthy cal
culations for the periodic Biot number case, a constant Biot number 
solution which gives comparable heat transfer results was sought. In 
order that such an approach be useful for design, the constant Biot 
number was based on a priori known information—Bii, Bi2, fin 
thickness and interfin spacing (see equation (15)). The constant-
Biot-number approximating curve was found to generally overesti
mate the finned-tube heat transfer, with the largest deviations near 
the inlet and lesser deviations at larger downstream distances. Typical 
deviations are 20 to 25 percent at Q/Qma* ~ 0.1 and ten percent at 
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T a b l e 2 F u l l y d e v e l o p e d N u s s e l t n u m b e r s 

Case Nui Nu2 

1 0.7536 11.23 
2 1.770 8.839 
3 1.074 10.82 
4 1.336 16.51 
5 0.6553 11.75 
6 0.3657 13.32 

Q/Qmax ~ 0-5- For small Biot numbers, the constant Bi approximation 
is an excellent representation of the heat transfer results for periodic 
Biot number. When the Biot number is large, both the constant-
Biot-number and periodic-Biot-number results tend to merge with 
those for uniform wall temperature. 

The quality of the constant-Biot-number approximation is about 
the same for finned tubes of different Biot-number periods, provided 
that the fin coverage and the Biot number level are maintained. 
However, an increase in the interfin spacing degrades the quality of 
the approximation. 

Although the analysis and results are for laminar tube flow, certain 
conclusions can also be drawn for turbulent flows in externally finned 
tubes. In general, the tube-side (i.e., internal) thermal resistance of 
a turbulent tube flow is substantially smaller than that of a laminar 
tube flow. Therefore, the external resistance will play a more decisive 
role in the former than in the latter. On this basis, it may be expected 
that external finning will be even more effective for a turbulent tube 
flow than for laminar tube flow. Furthermore, the present results for 
low-Biot-number laminar flows suggest that the heat transfer to an 
externally finned turbulent flow can be well approximated by that 
of a constant-Biot-number model. 

As was noted in the Introduction, the model used here for the ex
ternal heat transfer coefficient represents a limiting case. Depending 
on the tube wall thickness and thermal conductivity, axial heat con

duction in the wall will tend to smear out the abruptness of the 
changes between hi and h2. To determine the extent of such smearing 
would necessitate that the conduction problem for the tube wall and 
the fin be solved simultaneously with that for convection in the 
flowing fluid. In addition to the generally enlarged scope of the 
computations, the solution of such a coupled problem would have a 
different numerical character from that of the convective heat transfer 
problem that has been solved in this paper. 

The present solution is a marching solution (starting at x = 0 and 
marching to larger x), so that the solution at any given axial station 
is unaffected by happenings at larger x. On the other hand, in the 
coupled problem, axial conduction in the wall tends to carry infor
mation upstream as well as downstream, with the result that the so
lution at a given axial station is affected by happenings at larger x. 
As a consequence, a marching-type solution is precluded and, instead, 
the entire field (i.e., all axial stations) has to be solved simultaneously. 
Such a numerical solution, while possible in principle, is extremely 
demanding in computer time and storage. Its demands are well be
yond the computational capabilities available to the authors. 
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Rotating Cylindrical Tube 
The paper reports the results of a numerical solution for laminar fluid flow and heat 
transfer in the developed region of a tube rotating about a parallel axis. The results cover 
a wide range of Prandtl number and the eccentricity and Coriolis effects are included in 
the solution. By transforming the variables in the governing equations, it is shown that 
the Rayleigh and Reynolds numbers only occur as the product Ra Re, and at large Prandtl 
number an asymptotic solution is defined by the product Ra Re Pr and the eccentricity 
alone. The numerical solution of the full governing equations confirms this and indicates 
that for sufficiently large radius of rotation Nu = i{Ra Re Pr) is a good approximation 
over a wide range of Prandtl number. The Fanning friction factor is better described by 
Gr Re. The solution is compared with other analyses and experimental data for air, water, 
and glycerol. 

Introduction 
Fluid which is constrained to flow in a rotating duct is influenced 

by inertial effects which can significantly alter the flow field in relation 
to the stationary duct situation. If the duct wall is heated, the con-
vective mechanism, which controls energy transfer to the fluid, is also 
interactively influenced by the rotation and it is with this effect that 
the present paper is mainly concerned. In addition to their intrinsic 
academic interest, this class of rotating flow problems is particularly 
important in the design of certain energy conversion machines where 
it is often necessary to cool components which are rotating in a hostile 
thermal environment in order to maintain a commercially acceptable 
machine life. 

The investigation considers the effect of buoyancy on laminar flow 
and heat transfer in the developed region of a uniformly heated cir
cular tube, rotating about on axis parallel to itself. At large radii of 
rotation, the phenomenon is analogous to gravitational buoyancy in 
a uniformly heated horizontal tube. The solution therefore presents 
a correction to the Nusselt solution for the case of the horizontal 
tube. 

The first theoretical solutions to the problem were presented by 
Morton [1] and Morris [2]. They used a perturbation technique to 
solve the governing equations and their solutions were valid for weak 
secondary flows. With the aid of experimental observations on the 
horizontal tube using air, Mori and Nakayama [3] developed a solution 
for strong secondary flows. The solution was based on the division of 
the flow and temperature fields into a central core region and a 
boundary layer region along the wall. Their solution at low Prandtl 
number was confirmed by Woods and Morris [4] but at high Prandtl 
number their assumptions on the flow and temperature fields break 
down. Siegworth, et al. [5] generated a solution for a Prandtl number 
approaching infinity, demonstrating that the axial velocity profile 
remains in its parabolic form in this situation and does not display 
a core and boundary layer region structure. 

This paper presents a numerical solution of the problem which 
requires no assumptions as to the structure of the flow and temper
ature fields to simplify the governing equations. The solution is 
therefore able to span the full range of Prandtl numbers between the 
solutions of Mori and Nakayama and Seigworth, et al. In order to 
simplify the problem for ease of solution, the additional effects of 
eccentricity and Coriolis terms have been largely ignored to date. The 
numerical solutions examines these effects. 

Experimental heat transfer data is available for a wide range of 
Prandtl number. Results are available for air in the horizontal tube 
and air, water and glycerol in the rotating tube. The data are converted 
to a common notation and compared with the numerical and other 
solutions. This is designed to coordinate information available in this 
field. 

Formulation of the Equations 
Consider steady laminar flow in a cylindrical tube of radius, a, ro

tating with uniform angular velocity, Q about an axis parallel to the 
central axis of the tube and displaced a distance, H, from it. The 
motion of the fluid is referred to the cylindrical polar frame, /', 0, z, 
which is fixed relative to the tube. The velocities in these respective 
directions are u, v and w. The angular co-ordinate is defined as posi
tive in the direction of rotation and the axial co-ordinate as positive 
in the direction of flow. 

The following assumptions are made in order to make the problem 
more amenable to analysis. All properties of the fluid are taken to be 
uniform with the exception of density in its interaction with the ro
tational acceleration terms. The density is assumed to vary linearly 
with temperature via the usual volume expansion coefficient, /3. The 
flow is studied far enough downstream for entry effects to be absent. 
The tube wall is considered of sufficiently high conductivity for there 
to be no circumferential temperature variation at the wall. Under 
these circumstances a similarity solution exists. As the temperature 
at all locations in the developed region is increasing linearly, the 
temperature relative to the local wall value is independent of axial 
location. 

The assumptions of linear density variation in the buoyancy terms 
and all other fluid properties constant render the theory more valid 
as the temperature range decreases. Therefore strong secondary flow 
effects, due to large values of the terms, Q, H, a and /3 rather than large 
temperature gradients are better described by the theory. 

Details of the formulation of the governing equations in the general 
form presented here have been presented by Morton [1], Morris [2] 
and Woods and Morris [4]. These equations are therefore presented 
in their final dimensionless form. The axial momentum and vorticity 
transport equations become 

1 d(vfr, W) 
V2W + - ^ ^ — - + 4 R e p = 0 

x d{x,0) P (1) 

and 

xd(x,6) 

_R a(I^ c o s 0 +^ s i n0 + £^_iI^M)) (2) 
lxd0 dx dd Jxb(x,d)} 

the stream function and vorticity are related by the equation, 

V2i/< + £ = 0 (3) 

and the energy equation becomes 

Pr M, v) 
V*v+ ---—•+W = 0, (4) 

x d(x,a) 

where 
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x d i l dx/ x 2 d# 2 

The nondimensional stream function, i/< is defined 

d\j/ _v dxp - r a 

dr v dB v 
(5) 

and the dimensionless axial pressure gradient, Rep is written in the 
form 

a3 dp 
R e p = " 7 7 " 7 ~ • 

Av*p oz 

(6) 

so that for the nonrotational case it becomes equal to the mean flow 
Reynolds number. The remaining variables are defined in the No
menclature. The boundary conditions at the tube wall can be 
written 

dx dd 
ij = 0 (7) 

P r o p e r t i e s of the E q u a t i o n s 
It would appear at first sight that it is necessary to specify the five 

parameters Ra, Rep, Pr, e and J in order to define a particular solution 
for the flow and temperature fields. However these five parameters 
may be reduced to four by means of the following transformations. 
Let 

V = Pr i , % = Pr £, 77 = 7j/Rep, W = W7Rep 

which, on substitution into equations (1-4) gives 

1 1 d W , W') 
V2W' + *, , , + 4 = 0 

P r x d(x, 
(8) 

V2£' + 
1 l d Q / / , f ) 

P r x d(x,0) 

/ l bi)' drf 
— Ra ReD Pr cost> H sinO 

,x dB dx 

+ 6 drf 1 d(i', V') 

dB P r J x d(x,B) 

V V + £' = 0 

x d(jc,e) 

= 0 (9) 

(10) 

: 0 (ID 

This formulation indicates that the Rayleigh number and 
pseudo-Reynolds number do not occur independently, but only in a 
product form. Thus it is only necessary to specify the four parameters 
Ra Rep, Pr, e and J to describe the flow and related temperature 
field. 

A further interesting features emerges by examining the influence 
of Prandtl number. As the Pradtl number becomes large, equations 
(8) and (9) approach the assymptotic form 

V2{'-

V2H" + 4 = 0 (12) 

. ( I ^ c o s e + ^ s i n 9 + ^ ) = 0 (13) 
\x dB dx dd} 

whereas equations (10) and (11) remain as before. We see immediately 
from equation (12) that rotation does not influence the axial velocity 
field in the limiting case of large Prandtl number fluids, so that the 
axial velocity retains the parabolic form associated with Poiseuille 
flow. Therefore rotation does not affect flow resistance with fluids of 
high Prandtl number. For this limiting case equation (13) also dem
onstrates that only two parameters are necessary to describe the so
lution, namely the product Ra Rep Pr and the eccentricity, e. It is 
interesting to note that the Coriolis terms are no longer significant. 

Equations (1-4) are elliptic and may be solved numerically using 
the generalised procedure proposed by Gosman, et al. [6]. The ap
plication of this solution procedure to the present problem and the 
detailed manipulation required are given by Woods and Morris [4] 
and Woods [7]. In principle the partial differential equations are re
placed by an approximate set of nonlinear algebraic equations which 
are subsequently solved using an iterative procedure. Care was nec
essary in using the procedure to ensure convergence of the solution 
and in this respect criteria presented by Varga [8] for the iterative 
solution of a set of linear algebraic equations proved satisfactory 
guidelines. 

When the numerical solution had converged to an acceptable level 
of accuracy, the usual pipe flow Reynolds number, Re, the Panning 
friction factor /, and the Nusselt number, Nu, were determined by 
numerical integration of the axial velocity and temperature fields 
according to the definitions cited below. 

Re 2 p p 
•n Jo Jo 

Wx dx dB 

_ 16Rep 

NU> 
Re Jo 

Re 
2*d?j 

dx 

| Wi] x dx 
o Jo 

(14) 

(15) 

(16) 

dB 

R e s u l t s and D i s c u s s i o n 
The Analogous Horizontal Tube. In this analysis, the horizontal 

tube situation is simulated by putting e, the ratio of tube radius to 
radius of rotation, equal to zero. The results of the numerical solution 
for this case are presented in Fig. 1. These results are based on the 
solution of the full governing equations (1-4). However, in the light 
of the preceding analysis that indicated an asymptotic solution at high 
Prandtl number, the results are plotted against the parameter, Ra Re 
Pr. The results confirm the existence of the asymptotic solution. It 
is interesting to note that the asymptotic solution is a good approxi
mation over a wide range of Prandtl number. 

As for the asymptotic solution, Siegworth, et al.'s analysis for large 

^ N o m e n c l a t u r e . 
a = tube radius 
f = friction factor, equation (15) 
H = eccentricity 
J = rotational Reynolds number, Qa2/2v 
Nu = Nusselt number, equation (16) 
p = pressure 
Pr = Prandtl number 
r = radial co-ordinate 
Ra = rotational 

HWpraVav 
Re = through flow 

2wma/v 
Rep = Reynolds number based on gradient 

of p , equation (6) 
t = time 

Rayleigh number, 

Reynolds number, 

T = temperature 
u = radial velocity component 
v = tangential velocity component 
w = axial velocity component 
W = nondimensional axial velocity compo

nent, wa/v 
x = nondimensional radial co-ordinate r/a 
z = axial co-ordinate 
Q = angular velocity component 
p = density 
£ = axial vorticity component, -V2\p 
(3 = expansion coefficient 
v = kinematic viscosity 
8 = angular co-ordinate 
ip = nondimensional stream function, equa

tions (5) 
v = nondimensional temperature, (Tw 

T)/ra Pr 
e = eccentricity parameter, a/H 
T = axial temperature gradient 
a = thermal diffusivity 

Subscr ipts 

c = tube center line value 
m — mean value 
w = wall condition 
0 = nonrotating condition 

Superscr ip t 

' = transformed variables 
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Fig. 1 The numerical solution for Nusselt number, e = 0 

Prandtl number eliminated the terms converting momentum from 
the governing equations by means of dimensional reasoning and ex
perimental observation. Their integral method solution can be 
written 

Nu 

Nu0 

= 0.19 ( R a R e P r ) 0 (17) 

This is in good agreement with the results presented here. Correlating 
the numerical solution gives the modified equation 

over the range 

Nu 
= 0.262 (Ra Re Pr)0-173 

Nu0 

4 X 103 « Ra Re Pr «S 108 

0.7 « Pr < 104 

(18) 

It should be noted that this is merely a convenient approximation over 
that particular range. As can be seen from Fig. 1, the numerical so
lution also describes the weak secondary flow behavior as the solution 
approaches the Nusselt value, Nuo. In addition, there is some variation 
with Pr as well as with Ra Re Pr and the numerical solution predicts 
this. 

Mori and Nakayama's solution for a Prandtl number of 0.7 can be 
written 

Nu 

Nu0 

0.182 (Ra Re Pr)° (19) 

This is in surprisingly good agreement with the high Prandtl number 
solutions, considering the difference in assumptions. On the scale of 
Fig. 1, equation (19) can be considered coincident with Siegworth, et 
al.'s solution. At a Prandtl number of 2 the solutions do not agree due 
to the breakdown in the assumption of a core and boundary layer 
distribution for axial velocity at increasing Prandtl number. Again 
in Fig. 1, the solution is compared with the heat transfer data of Mori 
et al for air in the developed region of a horizontal tube. The agree
ment is good and indicates that the assumptions necessary for the 
analysis do not invalidate application. Mori, et al. also measured the 
temperature and axial velocity distributions across the vertical and 
horizontal tube diameters. These are compared with the numerical 
solution in Fig. 2 and confirm the results. 

In Fig. 3 the results for flow resistance are presented. The parameter 
Gr Re is found to be more effective in collapsing the data than Ra Re. 
Therefore at a given Ra Re value increasing Pr decreases the buoyancy 
effect and /approaches /o as predicted by the asymptotic solution. 
The comparison with Mori and Nakayama confirms their solution 
at low Prandtl numbers and for strong secondary flows. 

Eccentrici ty and Coriolis Effects. The effect of eccentricity on 
the temperature and flow fields is illustrated in Fig. 4. Coriolis terms 
are eliminated by setting J = 109. When e = 10 the tube is rotating at 
a radius of one tenth the tube radius. Although the temperature and 
flow fields are considerably modified relative to the e = 0 distributions 
(4), the effect on the overall parameters, Nu and f is not great, as 
shown in Fig. 5. Even at e, values approaching unity the effect is not 
dramatic. 

vv 

Fig. 2 A comparison between the numerical solution and the axial velocity 
and temperature distributions measured by Mori, et al. [9] on a horizontal 
heated tube (horizontal diameter, Re = 2050, Ra = 56.8, Pr = 0.7 and vertical 
diameter, Re = 2700, Ra = 49.7, Pr = 0.7) 

The Coriolis terms cause the temperature and flow fields to become 
asymmetric. This is illustrated in Fig. 6. The Coriolis term, Ra eJ/x 

<>bp, y)/d(x,d) in equation (2) indicates that the effect increases as 
( increases and as J decreases for a given Rayleigh number. This effect 
of rotational Reynolds number on Nu and / is shown in Fig. 7. Mori 
and Nakayama's analysis predicts the opposite, that the Coriolis effect 
increases with increasing J. Their analysis is based oh the secondary 
flow interacting with rotation directly. In the formulation of the 
equations presented here direct interaction does not appear. Coriolis 
terms not including the temperature effect form a conservative field 
and do not effect the flow pattern. It is the interaction of the Coriolis 
accelerations and temperature field that modifies the flow. 

Comparison with Rotat ing Tube Data. The sources of the data 
are Morris [2], Woods [7] and Sakamoto and Fukui [11]. Table 1 in
dicates the range of variables and fluids studied. 

One of the results which emerged from the theoretical analysis 
described earlier was the fact that the high Prandtl number solution 
could be extended with good approximation to include gas-type flows. 
It is convenient therefore to compare the experimentally determined 
heat transfer results with the product Ra Re Pr as shown in Fig. 8. In 
this figure the increase in developed region Nusselt number is shown 
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Fig. 3 The numerical solution for ihe friction coefficient, e = 0 
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Fig. 4 Velocity and temperature distributions as predicted by the numerical 
solution Illustrating the eccentricity effect (RaRep = 106, Pr = 2, J = 109) 
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Fig. 5 The effect of eccentricity on the numerical solution for bulk Nusselt 
number and friction coefficient (RaRep = 106, J = 10s) 
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Fig. 6 Velocity and temperature distribution as predicted by the numerical 
solution Illustrating the Corlolis effect (RaRep = 106, Pr = 2, 6 = 1) 
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Fig. 7 The effect of coriolis accelerations on the numerical solution for bulk 
Nusselt number and friction coefficient (RaRe„ = 10s, € = 1) 

Table 1 Sources of experimental data 

Source Fluid 

Length/diameter 
ratio of test 

section 

Eccentricity 
Parameter 

Ra Re range 

Morris 
Morris 
Woods 

10 
10] 
4] 

Sakamoto and Fukui [11] 

Water 
100 percent Glycerol 

Ail-

Air 

48 
48 
48 
96 

20-24 

0.021 
0.021 
0.021 
0.011 
0.05 

103 - 6 X 106 

2 X 10"1 - 4 X 102 

104 - 6 X 106 

104 - 6 X 106 

0 - 1.6 X 108 

for all three fluids for which experimental data are available. Also 
shown is the high Prandtl number solution resulting from the present 
analysis for 6 = 0. This eccentricity value was selected for the theo
retical comparison since as demonstrated earlier, the range of ec
centricities used for the experiments was unlikely to have a significant 
effect. 

The scatter of the data indicates the problem of entry region effects 
in rotational work where long heated sections and settling lengths are 
not easily constructed. The data do, however, form an envelope 

around the solution. It is interesting to note that the low Reynolds 
number glycerol data, which would exhibit the shortest entry region, 
appear to follow the data closest. 

The asymmetric temperature profile produced as a consequence 
of rotation results in a corresponding circumferential variation in local 
heat flux at the wall of the tube. Sakamoto and Fukui [11] assessed 
this circumferential variation of flux using the well known analogy 
between heat and mass transfer. These authors measured the rate of 
naphthalene transfer from a coated inner tube wall for a variety of 
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Fig. 8 Comparison between theoretical and experimental data 

10° 

rotational conditions. Figure 9 shows, for a typical set of operating 
conditions, the variation of mass transfer detected. For convenience 
the ordinate in Fig. 9 is the normalized flux compared to maximum 
value which occurs at the outermost radial location. Also shown in Fig. 
9, for the same conditions at which the experimental data were taken, 
is the variation of heat flux predicted from the present solution 
technique. The agreement is good with exactly the same pattern of 
behavior being shown. 

Conclusions 
The use of a numerical technique has enabled a more general so

lution of the equations than was previously possible. Simplifying 
assumptions for the flow and temperature fields are not required as 
the fields are predicted. This has enabled a wide range of Prandtl 
number to be explored and the eccentricity and Coriolis effects to be 
incorporated. 

By transforming the variables it has been demonstrated that the 
Rayleigh and Reynolds numbers do not occur independently but as 
a product, Ra Re. In addition, at sufficiently large Prandtl number 
an asymptotic solution is approached which is defined by only two 
variables, Ra Re Pr and e. This was confirmed by solving the full 
general equations for a given eccentricity (e = 0, the horizontal tube) 
and a range of Prandtl number. This demonstrated that Nu = /(Ra 
Re Pr) not only at large Pr but at values as low as the gas range. This 
enabled a simplified correlation to be proposed which agrees well with 
Siegworth, et al.'s solution for Nusselt number at large Prandtl 
number. 

At the gas end of the Prandtl number range, the numerical solution 
is in good agreement with Mori and Nakayama's solution for heat 
transfer and flow resistance. The comparison with the experimental 
data of Mori, et al. for air in a horizontal tube confirms the theoretical 
predictions for heat transfer and the internal flow and temperature 
fields. 

The effects of eccentricity and Coriolis terms on the internal flow 
and temperature fields have been demonstrated. It is particularly 
useful to observe the structure of these fields theoretically, as to 
measure them experimentally would be difficult. Eccentricity has 
been shown not to have a great effect on heat transfer and flow re
sistance even when the radius of rotation approaches the tube radius. 
For a given Rayleigh number, the Coriolis effect increases with € and 
decreases with J. This conflicts with Mori and Nakyama's solution. 
The values of J at which the effect becomes significant are far lower 
than would be anticipated in most applications. 

The comparison with rotational data probably indicates the 
problem of entry effects as the tube is necessarily short for practical 
reasons. Although the results are assuring in that they form an en
velope around the theoretical solution, the gravitational data make 
comparison easier. 

Fig. 9 A comparison between the numerical solution for the circumferential 
heat transfer distribution and results of Sakamoto and Fukui [11] for the 
sublimation of napthalene 
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Free Confection Effec 
Deweloping Laminar 
Concentric Annul! 

s on the 
ow in Vertical 

Coupled energy and momentum boundary layer equations have been numerically solved 
for the problem of combined forced-free laminar convection in the entrance region of ver
tical concentric annuli. Both upflow and downflow of a fluid with Pr = 0.7 are considered 
under the thermal conditions of one wall being isothermal and the other adiabatic. Re
sults for the development of velocity profiles, axial distance at which the axial velocity 
gradient normal to the wall vanishes, pressure drop, and heat transfer characteristics are 
presented at various values of the parameter Gr/Re ranged from —700 to 1500. 

In troduc t ion 
In many engineering applications, heating usually starts at the duct 

entrance or at some point where the flow has not yet become hydro-
dynamically fully developed. However, few papers in the literature 
have dealt with the problem of combined forced-free laminar flow with 
simultaneously developing hydrodynamic and thermal boundary 
layers. Lawerence and Chato [1] obtained a numerical solution to the 
boundary-layer-type equations for the developing combined 
forced-free laminar flow in a vertical tube with a uniform velocity 
profile at the entrance and a constant wall heat flux. Zeldin and 
Schmidt [2] presented numerical results for the developing combined 
forced-free laminar flow in an isothermally heated vertical tube. Sa-
vakar [3] and Quintiere and Mueller [4] considered the developing 
mixed laminar flow between vertical parallel plates. The only pub
lished theoretical investigation handling the developing laminar flow 
with temperature-dependent physical properties in vertical concentric 
annuli seems to be that of Shumway and McEligot [5]. In their in
vestigation, the thermal boundary conditions of constant heat flux 
at one wall, while the other wall is kept either adiabatic or isothermal 
at the inlet fluid temperature, were considered. They presented nu
merical results for the local Nusselt number and pressure drop in an 
annulus of 0.25 radius ratio and concluded that "the flow development 
dominates the uniform entry problem and the effects of property 
variation are less striking." The possibility of flow reversal at high heat 
transfer rates was not considered in their investigation and neither 
developing axial nor developing radial velocity profiles were pre
sented. 

The available experimental investigations for the determination 
of the convective heat transfer parameters, in the combined forced-
free laminar flow regime, and/or the effect of superimposed natural 
convection on the stability of forced laminar flows are normally in 
tubes [1, 2, 6-13]. Very limited experimental data on combined 
forced-free convective heat transfer in vertical annuli are available 
in the literature [14,15]. 

The lack of either theoretical or experimental data concerning the 
problem of combined forced-free laminar annular flow with simul
taneously developing hydrodynamic and thermal boundary layers, 
and the practical importance of this problem in the field of nuclear 
reactors at periods of low power operation [11], motivated the present 
work. In the present study, combined forced-free laminar flow with 
a flat velocity profile at the entrance of concentric annuli has been 
investigated for two boundary conditions; namely, case (0) in which 
the outer wall is isothermal while the inner wall is adiabatic and case 
(I) in which the inner wall is isothermal while the outer wall is adia
batic. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
December 17,1979. 

G o v e r n i n g E q u a t i o n s a n d M e t h o d of So lu t ion 
Assuming steady, axisymmetric, laminar, boundary layer flow of 

a Newtonian fluid, with no internal heat generation, with constant 
physical properties except the density which only varies in the grav
itational body force term according to the Boussinesq approximation, 
and neglecting viscous dissipation, compression work and axial con
duction of heat, the dimensionless conservation equations of mass, 
momentum and energy in the entry region of a vertical annulus are 
respectively as follow 

vd-"+u™-
dR dZ 

dU dV V_ 

dZ dR R~ 

_dP Gr ',_ 

dZ Re 4(1 -

0, 

] dHJ ldlJ 

/V)2 dR2 RdR' 

dR dZ 

1 d2T 

Pr \dR2 R 

18T\ 

RdRJ 

(1) 

(2) 

(3) 

The plus and minus signs in the buoyancy term of equation (2) apply 
respectively to upward and downward flows, taking into account that 
the body force acts in the negative z-direction in case of an upward 
flow and vice versa in case of a downward flow. 

Since the r- momentum equation has been eliminated due to the 
boundary layer simplifications, an additional equation becomes 
mathematically necessary and it is possible, under the linearization 
numerical technique of Bodoia and Osterle [16,17], to compensate 
for the lack of such an equation by using the following dimensionless 
integral continuity equation 

RVdR = -(l-N2) (4) s 
JN 

Equations (1-3) are three equations in four unknowns, (U, V, P and 
T) subject to the following boundary conditions. 

fo rZ>Oandi? = iV, £/ = V = 0 a n d 

for case (I), 

.dT 

dR~ 
0 for case (0) or T = 1 

dT 
for Z > 0 and R = 1, U = V = 0 and T = 1 for case (0) or — = 0 

dR 

for case (I), 
for Z = 0 and N < R < 1, U = 1 and T = 0 (flat velocity and 
temperature profiles), 
at Z = 0, P = 0. (5) 

Equations (1-4), subject to the boundary conditions (5), have been 
numerically solved in [18] by means of the linearized implicit finite-
difference scheme of Bodoia and Osterle [16]. This linearized nu
merical technique depends on the application of equations (2-4) at 
each cross section with the values of V, in equations (2) and (3), as 
known values taken from the previous axial step, i.e., equations (2-4) 
are considered three equations in three unknowns (U, P and T). 
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Then, after numerically calculating U, P and T at each cross section, 
the correct values of V at the cross section are calculated by means 
of equation (1) with the known values of U. 

Due to space limitations and since the main aim of this paper is to 
present results not available in the literature, the reader may refer 
to [18] for the details of the method of solution or may refer to [17] as 
the present finite-difference scheme is a direct extension to that 
scheme described in [17]. 

Range of Validity of the Boundary-Layer Flow Model 
Since substantial radial momentum transfer is known to exist very 

near to the channel entrance, and since the boundary layer simplifi
cations (which neglect all radial forces in comparison with the forces 
in the axial direction) are used in deriving the governing equations 
of the present flow model, one would expect the present numerical 
solutions to be applicable beyond a short distance from the annulus 
entrance. For developing flows in circular tubes, Worsoe-Schmidt and 
Leppert [19] estimated the order of magnitude of the neglected terms, 
due to the boundary layer assumptions, and concluded that the 
boundary layer model is indeed valid as long as 2z/D Re Pr > 10~3. 
Transforming this restriction to the present nomenclature, we get Z 
> 2 X 10-3 (1 - JV)2 Pr. 

Wang and Longwell [29] obtained a solution for the complete 
governing equations in the entry region of parallel plate channels at 
a Reynolds number of 300. They concluded that both the overall 
pressure drop and the hydrodynamic development length predicted 
by the boundary layer methods are in reasonable agreement with their 
results. However, the boundary layer theory is not appropriate for 
obtaining the velocity profiles and the pressure gradients near the 
channel entrance. 

Considering the results of [29], calculated for Re = 300 with the 
more realistic boundary condition o f £ / = l a t z = - a > , the velocity 
gradient at the wall shows agreement within 1 percent with that of 
Schlichting's boundary layer solution at a dimensionless axial distance 
(based on channel hydraulic diameter) of 0.2083325. Taking into ac
count Re = 300, this latter dimensionless axial distance is again, with 
Pr = 0.7, very nearly equivalent to the same value of 2z/D Re Pr = 
10~3 given by [19]. 

The annular flow bears resemblance to the flow in parallel plate 
channels as JV —* 1, and to the flow in circular tubes as N —*• 0. 
Therefore, the restriction of 2z/D Re Pr > 10~3, given by [19] and 
concluded from the results of [29], and which by transformation to 
the present nomenclature may be written as Z > 2 X 10 - 3 (1 — JV)2 

Pr, is a valid restriction on the applicability of the boundary layer 
assumptions for the present investigation. However, another re-
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Fig. 1 Comparison between the results of the present analysis and those 
of [20], N = 0.8, Gr/Re = 0 

striction, concerned with the presence of flow reversals, would be 
clarified in next sections. 

Results and Discussion 
To check the adequacy of the present numerical solution, a special 

computer run was made for a radius ratio 0.8 with Gr/Re = 0. Figure 
1 shows, for the axial velocity development, a comparison between 
the results of the present work and those obtained by the analytical 
method of Sparrow and Lin [20] after plotting various points taken 
from the curves of [20] on the corresponding curves in the figure. It 
is clear from this figure that, in general, the present results are in 
excellent agreement with those of [20] especially for Z > 4 X 10~4. The 
small difference between the two sets of results a t Z < 4 X 10 - 4 comes 
mainly from the fact that in this region the curves of [20] corre
sponding to (r - ri)/(r2 - n ) = 0.1 and 0.9,0.2 and 0.8, etc. tend to 
coincide with each other; i.e., the velocity profiles become more 
symmetrical about the mid-point of the gap. However, the present 
results predict that asymmetry of the velocity profiles exist from the 
early stages of the development, the velocity profile being symmetrical 
only at the annulus entrance where it is uniform. It should be noted 
that, even though boundary layer assumptions and linearization of 
the inertia terms exist in both analyses, the effect of linearization in 
the present analysis has always been reduced, especially in the early 
stages of development, by usin§ very small axial steps near the en
trance, the axial step being increased several times as the flow moves 
away from the entrance. 

.Nomenclature. 
c = specific heat of fluid at constant pres

sure 
D = hydraulic diameter of annulus, 2(r2 — 

n) 
g = gravitational body force per unit mass 
h = local heat transfer coefficient based on 

area of heated surface, 

-k- \tm tw) 

k = thermal conductivity of fluid 
L = ratio between hydraulic development 

length and annulus hydraulic diameter 
JV = annulus radius ratio, ri/r^ 
p = pressure of fluid at any cross section 
pm = pressure defect at any cross section, p 

~Ps 
Pmfd = fully developed pressure defect, (p — 

Ps)fd 
po = pressure of fluid at annulus entrance 
p s = hydrostatic pressure, ^pogz 
P = dimensionless pressure defect, (pm — 

POVPOW2 

Pfd = fully developed dimensionless pressure 
defect, (pmfd - p0)//oou2 

r = radial coordinate 
r\ = inner annulus radius 
ri = outer annulus radius 
R = dimensionless radial coordinate, rlri 
t = fluid temperature at any point 
tm = mixing cup temperature over any cross 

section, 

utr dr I | ur dr 

to = fluid temperature at annulus entrance 
tw = isothermal wall temperature 
T = dimensionless temperature, (t — to)/(tw 

-to) 
Tm = dimensionless mixing cup temperature, 

{tm — to)/(tw — to) 
u = axial velocity component 
ti = mean axial velocity, 

ur dr I 1 r dr 

«o = entrance velocity 

U = dimensionless axial velocity, u/u 
v = radial velocity component 
V = dimensionless radial velocity, povr^ln 
z = axial coordinate 
Z = dimensionless axial coordinate, 2«(1 -

JV)/r2Re 
Zo = dimensionless hydrodynamic develop

ment length 
Zr = dimensionless axial distance at which 

the velocity gradient normal to the wall 
vanishes 

,8 = volumetric coefficient of thermal ex
pansion 

p = fluid density, p0[l — /3(t — to)] 
po = fluid density at inlet fluid tempera

ture 
fi = dynamic viscosity of fluid 
Re = Reynolds number, poDu/p, 
Pr = Prandtl number, pc/k 
Gr = Grashof number, po2gf3(tm - to)D3/ 

Nu = local Nusselt number, hD/k 
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Fig. 2(a) Development of axial velocity profiles, N = 0.9, Pr = 0.7, Gr/Re Fig. 2(6) Development of axial velocity profiles, N = 0.9, Pr = 0.7, Gr/Re 
= S00 = -200 

Table 1 Critical distance Zr at which the velocity gradient normal to the wall vanishes and the hydrodynamic 
development length Z0 , Pr = 0.7 

Gr/Re 

-700 
-600 
-500 
-400 
-300 
-200 
-100 

0 
100 
200 
300 
400 
500 
700 
800 
900 

1000 
1200 
1300 
1400 
1500 
1600 

-200 
• 200 

500 
800 

Zr X 104 

0.63 

1.08 
1.70 
3.30 
NFR 
NFR 
NFR 
NFR 
NFR 
NFR 
NFR 
NFR 
9.40 
7.66 
6.80 
6.25 
5.52 
5.30 

4.90 

NFR 
NFR 
NFR 
6.8 

N= 0.9 
Z0 X 102 

NI 

NI 
NI 

1.562 
1.396 
1.118 
0.059 
0.878 
1.092 
1.223 
1.312 
1.387 
1.514 
1.566 

NI 
NI 
NI 
NI 

NI 

Thermal Boundary 

L+ X 102 

NI 

NI 
NI 

39.05 
34.90 
27.95 

1.475 
21.95 
27.58 
30.40 
32.80 
34.75 
37.85 
39.15 

NI 
NI 
NI 
NI 

NI 

Thermal Boundary Condition (0) 
N = 0 . 9 

1.203 
1.042 
1.332 
1.481 

30.075 
26.05 
33.30 
37.025 

Condition (I) 

Zr X 104 

13.3 
17.2 
23.5 
37.0 
NFR 
NFR 
NFR 
NFR 

NFR 

NFR 

NFR 

23.9 
18.5 
17.7 
17.0 
16.6 
16.1 

iV=0.5 
ZQ X 102 

NI 
NI 

69.45 
65.50 
60.04 
51.31 
38.20 

1.68 

20.60 

42.70 

56.80 

64.20 
70.50 
73.00 
75.50 
78.02 

NI 

L+ X 102 

NI 
NI 

69.45 
65.50 
60.04 
51.31 
38.20 

1.68 

20.60 

42.70 

56.80 

64.20 
70.50 
73.00 
75.50 
78.02 

NI 

NFR—Neither flow reversal nor zero velocity gradient normal to the wall occur. 
NI—Numerical instability occurs before the flow reaches full development. 

Figures 2(a) and 2(b) represent samples of the developing axial 
velocity profiles U corresponding to some values of the parameter 
Gr/Re for both boundary conditions (I) and (O) with Pr = 0.7. It is 
clear from these figures that when the free convection aids the forced 
flow (i.e., positive Gr/Re for heating with upflow or cooling with 
downflow) the fluid accelerates near the heated boundary and de
celerates near the opposite insulated wall. The developing axial ve
locity profiles deviate increasingly from the corresponding isothermal 
(or constant density) profiles until a cross section of a maximum ve
locity distortion, at which the slope of the profile (dU/dR) at the in
sulated wall becomes a minimum is reached. As the axial distance 
increases further, the axial velocity profile recovers and approaches 
the fully developed isothermal profile as the fluid temperature ap
proaches the isothermal wall temperature. 

On the other hand, when the free convection opposes the forced flow 
(i.e., negative Gr/Re for heating with downflow or cooling with upflow) 
the buoyancy force tends to retard the fluid near the heated boundary 
and accelerates it near the opposite adiabatic wall. In such a case the 
maximum velocity profile distortion occurs when the slope of the 
profile at the heat transfer boundary reaches its minimum value. 
Therefore, in this case a possibility of flow reversal occurs near the 
heat transfer boundary while such a flow reversal may occur near the 
insulated wall if the natural convection is aiding the forced flow. 

With a reversed flow the slope of the axial velocity profile at the 
wall, near which the flow reversal occurs, is negative. However, it is 

important to know, for each value of the parameter Gr/Re, the critical 
distance Zr, at which the velocity gradient normal to the wall vanishes 
(dU/dR | Waii = 0), since under such a condition boundary layer sepa
ration may occur and the boundary layer assumptions might no fur
ther be applicable [21]. This critical distance is given in Table 1 for 
all the computer runs which are available at the moment of writing 
this paper. 

It is clear from this table that, in general, such a critical condition 
only occurs at large absolute values of Gr/Re and that, for a given 
annulus, the distance Zr decreases as the absolute value of Gr/Re 
increases. Also, for the same value of Gr/Re, Zr decreases as the an
nulus radius ratio increases and it has, for a given annulus, a smaller 
value with thermal condition (O) than with thermal condition (I). This 
latter prediction can physically be attributed to the greater velocity 
profile distortions which exist, at the same dimensionless axial dis
tance Z, with thermal boundary condition (O) than with thermal 
boundary condition (I) due to the bigger heated surface area associ
ated with the former boundary condition than with the latter. 

Another important length given in Table 1 is the dimensionless 
hydrodynamic development length Zo defined as the distance re
quired for the axial velocity profile to approach within ±0.5 percent 
of its fully developed value [22]. The dimensionless constant "L+" 
given in Table 1 is equal to L/Re, where L is the ratio between the 
hydrodynamic development length and the annulus hydraulic di
ameter. It is clear from Table 1 that, for a given annulus, the hydro-
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dynamic development length ZQ increases with the absolute value of 
the parameter Gr/Re. This is to be expected since the distortion of 
the velocity profiles increases by increasing the absolute value of 
Gr/Re and hence the distance required for recovery and approaching 
the fully developed profile increases. 

Table 1 also shows that, in general, for cases where neither flow 
reversal nor zero velocity gradient normal to the wall occur over the 
entire development length, the computer program was able to obtain 
the hydrodynamic development length ZQ. On the other hand, it was 
expected that, due to numerical stability (the reader may refer to [23] 
and [24] for details of numerical stability), the step-by-step numerical 
scheme would not handle anything but uni-directional laminar flow 
problems [16,17]. However, in the present work it has succeeded in 
obtaining converged numerical solutions until full development for 
some cases with a reversed flow occurring over a certain portion of the 
hydrodynamic development length. Indeed, at large absolute values 
of Gr/Re, where appreciable flow reversals exist, converged numerical 
solutions could always be obtained until the critical distance Zr after 
which the solution starts to diverge from the laminar solution, nor
mally after a further axial distance with a reversed flow existing. This 
divergence appears as the radial velocity component starts to increase 
instead of decaying as in the laminar flow solution. It may be worth 
mentioning here that similar solution divergences have been reported 
by Sherwin and Wallis [14,25] and Zeldin and Schmidt [2]. Also, ex
periments with hydrodynamically fully developed pipe flows (e.g., 
[8]) indicate that with free convection aiding the forced flow transition 
to unsteady flows occurs only beyond a stable reversed flow region 
while with natural convection opposing the forced flow such a tran
sition occurs suddenly. 

Figure 3 shows the development of the radial velocity component 
in an annulus of N = 0.9 for both thermal boundary conditions (I) and 
(0) with Pr = 0.7 and Gr/Re = 200. Comparing the radial velocity 
development in this figure with its development for the case of pure 
forced convection given in [17] and [22], the drastic effect of free 
convection on the development of that velocity component could 
easily be seen. 

Effect of Free convection on Laminar Pressure Drop and Heat 
Transfer Characteristics. Figure 4 presents some numerical results 
of dimensionless pressure P against the dimensionless axial distance 
Z for N = 0.9 at various values of the parameter Gr/Re with Pr = 0.7. 
It is clear from this figure that with positive values of Gr/Re (i.e., the 
free convection aids the forced flow) the power required to pump the 
fluid until a certain distance from the entrance through a given an
nulus is less than that required in the absence of free convection. On 
the other hand, when the free convection opposes the forced flow (i.e., 
negative values of Gr/Re) the power needed is higher than that in the 
the purely forced convection case. 

Another important point to be mentioned is that at large values of 
the dimensionless axial distance Z the flow approaches full develop
ment. Taking into account that at full development the inertia terms 
on the left hand side of equation (2) vanish, dP/dZ = constant and T 
= 1, it could easily be proved that the linear variation of the fully 
developed dimensionless pressure (Pfd) with Z is according to the 
following equation 

Gr Z 8Z 
fd ~ ± Re 4(1 - iV)2 ~ l + W 2 + ( l - J V 2 ) / l n i V ( 6 ) 

At large values of Z, the present numerical predictions showed that 
the variation of P with Z becomes linear and parallel to the straight 
lines given by equation (6). This means that, for each value of Gr/Re 
and at large values of Z (where the flow approaches full development), 
the difference between the dimensionless pressure P and the di
mensionless fully developed pressure Pfd (which would be obtained 
if the flow were hydrodynamically and thermally fully developed right 
from the annulus entrance) approaches a constant value which is 
known as "the fully developed pressure drop increment" [20]. 
Therefore, Fig. 4 only concentrates on that distance near to the an
nulus entrance before the variation of P with Z becomes linear and 
parallel to the straight lines given by equation (6). 

Figure 5 gives, for N = 0.9, the variation of the local Nusselt number 

Fig. 4 Effect of Gr/Re on the pressure drop, W = 0.9, Pr = 0.7 

5xKf5 5xl0"4 

Fig. 5 Local Nusselt number against axial distance, N — 0.9, Pr = 0.7 

with the dimensionless axial distance Z at various values of the pa
rameter Gr/Re with Pr = 0.7, while Fig. 6 gives such a variation for 
the mixing cup temperature Tm. It is clear from these two figures that 
with positive values of Gr/Re (i.e., free convection aids the forced flow) 
both Tm and Nu are higher, for the same Z, than their corresponding 
values of the purely forced convection case (Gr/Re = 0) and vice versa 
with negative values of Gr/Re. This is attributed to the higher ve
locities near the heated surface, and hence the decrease in the thick
ness of the developing boundary layer on that boundary, in case of an 
aiding free convection. However, since the fully developed laminar 
velocity profile for both pure forced convection and mixed convection 
cases is the same as the isothermal laminar velocity profile, the mixed 
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Fig. 6 Mixing cup temperature against axial distance, N = 0.9, Pr = 0.7 

convection Nusselt number approaches, at large values of Z and for 
all values of Gr/Re, the same fully developed values which could be 
obtained from the series solutions of the well known classical Graetz 
problem. This provides an analytical check on the numerical solutions 
to be obtained. The present numerical predictions showed that, at 
large values of Z and for all values of Gr/Re, the local Nusselt number 
for N = 0.9 with thermal boundary conditions (I) and (0) approaches 
the values 4.941 and 4.778, respectively. Also, the corresponding 
predicted numerical value for N = 0.5 with thermal boundary con
dition (I) is 5.715, which is within 0.4 percent of the value 5.738 ob
tained by series solutions of the classical Graetz problem [26, 27]. 

It could be seen from Fig. 5 that, at any dimensionless axial distance 
Z, Nu is very nearly a linear function of Gr/Re. This is in agreement 
with the results of Zeldin and Schmidt [2] for developing pipe 
flows. 

The unusual behavior found by Marner and McMillan [28] con
cerning the increase of Nu, near the point of maximum velocity profile 
distortion, with increasing axial distance has also been obtained in 
the present work, especially with negative values of Gr/Re. However, 
it should be cautioned that such an unusual behaviour occurs in the 
present work only beyond the critical distance for reversed flow Zr, 
which is indicated on the curves given in Fig. 5. 

It should be noted that the variation of Nu with Z for large absolute 
values of Gr/Re, given in Fig. 5, is shown up to the axial distance after 
which the solution starts to diverge. Referring to this figure and also 
to Table 1, it can be seen that this divergence only happens after the 
critical distance Zr is reached. Since, as previosly mentioned, the 
boundary layer assumptions might not be applicable beyond that 
critical distance [21], use of such a figure may only be limited up to 
that critical distance (circuled points in the figure). 

Finally, to show a case for the importance of the present results and 
to discuss the practical applications for which the reported range of 
Z and Gr/Re would be important, let us consider a double-pipe heat 
exchanger with an upflow of air in its annular gap and a condensing 
steam inside its core pipe. Owing to the very low thermal resistance 
of the condensing steam in comparison with the thermal resistance 
of the flowing air, the inner wall temperature of such a double-pipe 
heat exchanger would be very nearly equal to the saturation tem
perature of the condensing steam. Given a condensing steam absolute 
pressure of 4000 kp/m2, which is a reasonable figure for a process 
steam pressure bled from a power station, the inner wall temperature 
tw would be nearly 75.42° C. Assuming an inlet ambient air temper
ature t0 of 27°C, then (tw - t0) =* 48.42°C, n/Po =* 15.7 X 10~6 m2/s, 
1//3 = (to + 273) = 300 K, and hence for an annulus of N = 0.5 with 
r2 = 0.05 m the Grashof Number Gr == 8 X 105. Therefore, for a flow 

of air with Re = 1600, the parameter Gr/Re c* 500, and from Table 
1 Zo = 0.427 i.e., ZQ = 34.16 m. This example shows that under such 
possible practical conditions, the flow is in the combined forced-free 
laminar regime, the distance required to approach the fully developed 
flow conditions is very large, and hence the hydrodynamic and heat 
transfer characteristics should be estimated from the solutions of the 
developing combined forced-free laminar flow. 

Concluding Remarks 
The present investigation showed the significant effects of a su

perimposed free convection on the hydrodynamic and heat transfer 
characteristics of a developing laminar annular flow. Data, not 
available in the literature, have been given for the hydrodynamic 
development length, pressure drop, and heat transfer parameters 
under the thermal boundary conditions of one wall being isothermal 
and the opposite wall adiabatic. When the free convection opposes 
the forced flow (i.e., heating with downflow or cooling with upflow) 
there exists a possibility of flow reversal near the heated boundary 
while such a flow reversal may occur near the insulated wall if the free 
convection is aiding the forced flow. The critical distance at which 
such a flow reversal, and hence boundary layer separation, may occur 
has also been given. 
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Natural Confection Heat Transfer' 
from the Upper Plate of a Colinear, 
Separated Pair of Vertical Plates 
The effect of a buoyant boundary layer spawned by a heated vertical plate on the natural 
convection heat transfer from an upper colinear vertical plate has been determined ana
lytically. The interplate spacing was varied parametrically, as were the relative tempera
tures and relative lengths of the two plates; the Prandtl number was equal to 0.7 for all 
cases. Heat transfer at the upper plate was found to be affected both by the preheating 
and by the finite velocity imparted to the fluid by the first plate, respectively tending to 
degrade and to enhance the heat transfer. The upper-plate heat transfer was compared 
to that of an otherwise identical vertical plate, but with the lower plate absent. When the 
temperatures of the upper and lower plates are the same, the overall upper-plate heat 
transfer is less than that of its single-plate counterpart for small interplate spacings, with 
the opposite relationship at larger spacings. If the temperature of the upper plate is sub
stantially below that of the lower plate, the overall heat transfer is degraded. On the. other 
hand, heat transfer enhancement generally occurs when the upper plate is relatively hot. 
In general, the heat transfer from relatively short upper plates is very sensitive to the 
presence of the lower plate, with a lessening sensitivity with increasing plate length. The 
computed temperature and velocity profiles demonstrated that near the leading edge of 
the upper plate, a new boundary layer develops within the already existing boundary 
layer spawned by the first plate. 

Introduction 
Since the pioneering work of Lorenz [1] in 1881, there has been an 

outpouring of papers dealing with external-flow natural convection 
(e.g., about vertical plates or horizontal cylinders). A modest sampling 
of this literature may be found in [2-4]. A careful examination of the 
available literature has shown that, aside from a handful of papers, 
all of this work was concerned with natural convection about single 
bodies (e.g., a single plate or a single cylinder). In reality, there are 
many instances where natural convection flows induced by one body 
wash other bodies which are, themselves, generators of natural con
vection flows. The present research is concerned with such interacting 
natural convection flows and their analytical treatment. 

It is interesting to consider the processes which shape the heat 
transfer response of a body which is washed by an upstream-induced 
natural convection flow. The existence of a finite-velocity approach 
flow tends to increase the rate of heat transfer from the body relative 
to that for the same body situated in an otherwise quiescent envi
ronment. On the other hand, the approach flow has been preheated 
by the upstream body (or bodies), so that the temperature difference 
between the body and the flow is diminished compared with the case 
of the quiescent, isothermal environment. The diminution in tem
perature difference tends to decrease the heat transfer, both directly 
as well as indirectly due to a diminution of the bouyancy force. 

Thus, the two novel features related to the upstream-induced 
natural convection flow tend to affect the heat transfer from the body 
in conflicting ways. The outcome of the conflict depends on a variety 
of factors including the streamwise (i.e., vertical) and transverse 
distances between the bodies and the relative temperatures of the 
bodies. For example, intuitive expectations can be projected about 
the role of the1 streamwise separation distance. For this, note may be 
taken of the behavior of the buoyant plume spawned when a natu
ral-convection vertical-plate boundary layer departs the trailing edge 
of the plate. It was shown [5] that with increasing vertical distance 
from the trailing edge, the velocities in the central region of the plume 
increase while the temperatures decrease. In light of the discussion 

of the prior paragraph, it follows that a body situated in the central 
region of the plume will experience higher heat transfer rates as it is 
positioned progressively farther above the trailing edge. These ex
pectations will be revisited when the results of the present analysis 
are presented. 

The literature on interacting natural convection flows is very sparse, 
and a search revealed only three papers on the subject [6-8], all dealing 
with experiments involving two or more convectively interacting 
horizontal cylinders. It appears that there has been no prior analytical 
study of interacting natural convection flows; the present work is 
directed toward such a study. 

The physical situation selected for analysis is depicted in Fig. 1 
which portrays a pair of colinear vertical plates separated by a space 
S. The lower plate, which is of length L\, is maintained at a uniform 
temperature Tm\, and the upper plate, of lengthL2 , is maintained at 
TW2- Both Tw\ and Tw2 are greater than the ambient temperature T„, 
so that there is a natural convection upflow. Furthermore, both faces 
of each plate are at the same temperature, giving rise to an identical 
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Fig. 1 Schematic diagram of a colinear, separated pair of vertical plates 
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flow field adjacent to each face of the plate. The plates are sufficiently 
thin so that neither trailing-edge or leading-edge flow separation 
occurs. 

The boundary layer which develops along the lower plate becomes 
a buoyant plume as it flows upward through the space S. Thus, the 
fluid arriving at the leading edge of the upper plate has a finite velocity 
and a temperature which, owing to heat transfer at the first plate, 
exceeds T^,. The temperature and velocity profiles in the plume'are 
bell-shaped, with the respective maximum values at any streamwise 
station occurring at the symmetry line (y = 0). In what follows, these 
profiles will be referred to as boundary layer profiles, although strictly 
speaking, they are better described as shear layer profiles. 

When the upmoving fluid encounters the upper plate, new 
boundary layers, embedded within the already existing velocity and 
temperature profiles of the plume, develop. The development of new 
boundary layers within already existing boundary layers is one of the 
novel features of the present problem. The resolution of this phe
nomenon is computationally very demanding, as will be documented 
shortly. 

The primary objective of the numerical solutions is to determine 
the local and average heat transfer rates on the upper plate. These 
results will be ratioed with the corresponding natural convection heat 
transfer rates for a single plate situated in a quiescent, isothermal 
environment. Temperature and velocity profiles in the fluid adjacent 
to the upper plate are also presented to illustrate the boundary layer 
within a boundary layer phenomenon. 

The solutions were obtained for dimensionless plate-to-plate sep
aration distances S/Li ranging from zero to two. Another parameter 
that was varied during the computations is the ratio of the tempera
tures of the plates, {Tw2 - T„)/(Twi - T„) = 6w2. This parameter was 
assigned values of 0.5,1, and 2. Cases with S/Lx = 0 and dW2 ^ 1 cor
respond to a continuous vertical plate with a step change in wall 
temperature. In addition to S/L\ and 6w2, the plate length ratio L2/Li 
was also employed to parameterize the average heat transfer results. 
The Prandtl number for all cases was fixed at 0.7 with air in mind. 

The present analysis bears a filial relationship to prior analyses of 
natural-convection vertical-plate flows with discontinuous boundary 
conditions, of which [5] and [9-11] are representative. 

Analysis and Solution 
The analytical model to be employed here is based on the boundary 

layer equations for natural convection flow and heat transfer. Al
though the boundary layer model is inexact in the immediate neigh
borhood of the leading edge of a plate, the heat transfer results at 
downstream surface locations are of high accuracy when the Rayleigh 
number is not too small. Deviations from boundary layer behavior 
may also occur at the trailing edge of the plate, but, in common with 
leading edge effects, their range of influence is limited [9], To avoid 
entanglement with non-boundary-layer effects associated with the 
trailing edge, the minimum separation distance S, for those cases 
where S > 0, will be taken as 0.5Li. The issue of nonboundary-layer 
effects at the trailing edge does not arise for the limiting case of S = 
0. It is also reasonable to expect that the wake shed by the lower plate 

will be more stable when the upper plate is present than when it is 
absent. This is because the upper plate provides a definite place to 
which the wake can attach, whereas otherwise it tends to wander. 

To begin the analysis, dimensionless variables are introduced as 
follows. 

X-x/Lh Y = y\gP(Twl-T.)/v'L^* (1) 

U = u/\g0(Tul - T-)L,]>« V = vl\gfrTul - T.W/LdV* (2) 

B<=(T-T„)/(Twl-T„) (3) 

Note that the length L\ and temperature (T^i - T„) of the first plate 
have been chosen as the length and temperature scales, respectively. 
In terms of these variables, the mass, momentum, and energy equa
tions for natural convection boundary layer flow take the form 

W dV 
— + — = 0 
dx ay 

d2U 

dY2 dX dY 

dfl dfl _ 1 d26> 

dX d Y ~ P r d Y 2 

(4) 

(5) 

(6) 

The foregoing equations contain one parameter, the Prandtl number. 
A second parameter, S/L\, enters the problem via the boundary 
conditions. 

On the surfaces of both plates, the velocity components U and V 
are zero. Each of the plates is isothermal, but the respective temper
atures, Tm\ and Tw% may be different, so that in terms of 6, 

1, (7) 

for the first and second plates, respectively. In the interplate gap, 
symmetry conditions apply on the line that is colinear with the plates; 
the conditions are 

V = dU/dY = d0/dY = 0 for Y = 0 and l < X < (1 + S/Li) (8) 

The boundary layer velocity and temperature profiles approach the 
ambient values U = 8 = 0 at sufficiently large Y. These same ambient 
conditions prevail at the leading edge of the first plate but, for com
putational convenience, they were replaced by alternative specifica
tions for U and 8 as will be described shortly. 

From the foregoing discussion, it is evident that the problem in
volves three distinct zones distinguished by specific boundary con
ditions, namely, 0 < X < 1 , K X < ( 1 + S/Lx), and X > ( 1 + S/Li). 
Note that the length L2 of the second plate need not be specified in 
the definition of the solution domain. This is because the boundary 
layer model limits streamwise information transfer to the positive 
x -direction, so that downstream events have no effect at upstream 
positions. Any streamwise station x on the second plate can, if desired, 
be regarded as x' = L2. 

Although the velocity and temperature fields adjacent to the first 
plate admit a similarity solution, those in the interplate gap and ad
jacent to the second plate are nonsimilar. For computational effi-

• N o m e n c l a t u r e . 

g = acceleration of gravity 
h = local heat transfer coefficient on upper 

plate 
h * = local coefficient on counterpart single 

plate 
h = average heat transfer coefficient on upper 

plate 
h* = average coefficient on counterpart sin

gle plate 
k = thermal conductivity 
L\ = length of lower plate 
L2 = length of upper plate 
Pr = Prandtl number 
Q = surface-integrated heat transfer rate on 

upper plate 
Q* = value of Q for counterpart single 

plate 
q = local heat flux at location x' on upper 

plate 
q* = value of q at location x' on counterpart 

single plate 
S = interplate spacing 
T = temperature 
Twi = surface temperature of lower plate 
T,„2 = surface temperature of upper plate 
T„ = ambient temperature 
U,V = dimensionless velocities, equation 

(2) 

u,u = velocity components 
X, Y = dimensionless coordinates, equation 

(1) 
x = coordinate measured from leading edge 

of lower plate 
x' = coordinate measured from leading edge 

of upper plate 
y = transverse coordinate 
/3 = coefficient of thermal expansion 
0 = dimensionless temperature, (T — T«,)/ 

(Twl - T„) 
0W2 = dimensionless upper-plate wall tem

perature, (Tw2 - T«,)l(Twl - T„) 
v = kinematic viscosity 
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ciency, a single numerical scheme was used for the entire solution 
domain, and no special note was taken of the similarity solution for 
the first plate, except for checking and comparison. 

The solutions were obtained by a marching procedure, starting at 
the leading edge of the first plate, traversing the length of that plate 
and the interplate gap, and then moving upward along the second 
plate. The actual computations were carried out by the Patankar-
Spalding method [12]. This is a fully implicit finite difference scheme, 
a special feature of which is that a dimensionless stream function co 
= (\p — i/',')/(i/'o — >Pi) is used as the transverse coordinate. The quan
tities \pi and I/'O respectively designate the values of the stream func
tion at the inner and outer edges of the boundary layer. In the present 
problem, \p; = 0 but \p0 varies with X as the boundary layer entrains 
fluid in the course of its development (the calculation of the en-
trainment rates is described in [12]). 

The finite difference grid spans the range 0 < co < 1 at all X, so that 
as the boundary layer thickness varies, the grid automatically follows 
the variations. This feature is highly advantageous for conventional 
boundary layers, for instance, for the boundary layer on the lower 
plate. However, it has to be employed with care when a new boundary 
layer develops within a thicker, already existing boundary layer, as 
occurs on the second plate in the present problem. The basis of the 
potential difficulty is that the co coordinate is tied to the already ex
isting boundary layer, as is the distribution of the grid points in the 
co direction. Therefore, unless special care is taken, there will be too 
few points adjacent to the plate surface to accurately resolve the de
velopment of the new boundary layer. 

After extensive testing and checking, a grid layout was determined 
which yielded high accuracy in all aspects of the solutions, including 
resolution of the new boundary layer on the second plate. The grid 
layout encompassed the following features: 

1 Five hundred points in the range 0 < co < 1. This number is 
about five times as great as that used for conventional boundary 
layers. 

2 Nonuniform deployment of the grid points in the co-direction 
with the highest concentration near the wall (or the symmetry line). 
The grid point distribution is expressed by 

co; = [(J - i)/(JV - I)]*"6 (9) 

where N is the total number of transverse grid points (IV = 500 in the 
present instance). 

3 A highly refined and carefully deployed grid point distribution 
in the X-direction. For example, in the immediate neighborhood of 
the leading edge of the second plate, a step size AX = 10~8 was em
ployed, and in the stream wise length from the leading edge (x' = 0) 
to x'/L\ = 0.01 there were 4000 streamwise stations. All told, 3000 
streamwise stations were used on the first plate, 1000-4000 in the 
interplate gap (depending on S/L{), and about 13,000 on the second 
plate between x'/Li = 0 and 5. 

As an accuracy test, the present Nusselt number prediction for the 
first plate was compared with the literature value as obtained from 
a similarity solution. The deviation between the two results was one 
in the fourth significant figure (~0.03 percent), and it is a moot 
question as to which result should be regarded as being more accu
rate. 

The Patankar-Spalding method requires that velocity and tem
perature profiles be given at the streamwise station at which the 
marching procedure is initiated. For this purpose, profiles from the 
integral momentum-energy solution ([13] pp. 312-315) were em
ployed. The calculations were initiated at X = 6 X 10 -10 . In view of 
this very small value of X, the approximations in the input profiles 
had no influence on the results at downstream stations. 

Results and Discussion 
The presentation and discussion of results will be subdivided into 

three parts: overall heat transfer, local heat transfer, and temperature 
and velocity profiles. These results pertain to the upper plate of the 
two-plate array. It is unnecessary to present results for the lower plate 
because they are identical to literature information for the conven
tional isothermal vertical plate. The parameters to be used for the 

presentation of the results will now be discussed. 
At any surface location x' on the second plate, the local heat flux 

is given by 

q = -k(dT/dy)0 = -k(Twl - T^Hg^/^L^HdO/dY^ 
(10) 

and, for a plate of length L2 and unit width, the overall rate of heat 
transfer from one side is 

Q= f \dx' (11) 
Jo 

These quantities are to be compared to the values of corresponding 
quantities for a plate that is in all ways identical to the upper plate 
(wall temperature = Tw2, ambient temperature = T„, length = L2), 
except that the lower plate is absent. This reference case will be 
identified by an asterisk, so that the ratios of interest are qlq* and 
Q/Q*. 

The reference quantities q* and Q* are readily determined from 
literature information. For laminar natural convection about an iso
thermal vertical plate, the local Nusselt number is expressed as 

NuJGv^ = 4,(Pi) (12) 

so that 

q* = k(Tw2 - TJ^gP/vW^ (13) 

and 

Q* = k(Tw2 - T „ ) S / " f e ^ / v 2 ) i / 4 L 2 3 / 4 ( 4 0 / 3 ) ( 1 4 ) 

With the foregoing, the qlq* and Q/Q* ratios follow as 

q_ = ITW1 - 7U5/4 (s ' /Li)1 '4 [-(dg/dY)0] 

q* \Tw2 -Tj • 0 

Q_ = ITW1 - r „ W 4 1{L2/LX) 

Q* \Tw2 - Tj U,2/ii)3/4(4cA/3) 

where 

(d8/dY)0d(x'/Lt) (17) 

Since q, q*, Q, and Q* correspond to the same wall-to-ambient tem
perature difference and the latter pair pertain to the same plate 
length, it follows directly that 

qlq* = h/h*, Q/Q* = h/h* (18) 

where h and h denote local and average heat transfer coefficients. 
The derivative (d#/dY)o and its integral / were determined during 

the course of the numerical solutions, thereby enabling the qlq* and 
Q/Q* ratios to be evaluated. For the special case of S = 0 and dw2 = 
1 (i.e., Tw2 = Twi), it is easily shown that 

qlq* = [(*7Li)/U + *7Li) ] l / 4 (19) 

Q/Q* = [(1 + L2/U)^ - iV&ilLtfl* (20) 

The results to be presented here are for Pr = 0.7, for which c6 = 
0.4995/V2 = 0.3532. 

Overall Heat Transfer. The results for the overall heat transfer 
rate and/or the average heat transfer coefficient are, perhaps, of most 
direct practical utility, and they are, therefore, presented first. In Figs. 
2 and 3, Q/Q* (= h/h*) is plotted as a function of the dimensionless 
interplate separation distance S/L\ for various fixed lengths of the 
upper plate. These plate lengths are expressed in terms of the ratio 
L2/L\, which has been assigned values of 0.25,0.5,1, 2, and 5. Figure 
2 conveys results for the case where (Tw2 — TV) is half of (T„,i — Too), 
while Fig. 3 contains information for two cases—one where Tw2 and 
Tw\ are equal and the other where (Tw2 — T„) is twice (Tw\ — T„). 

Inspection of these figures reveals that the heat transfer at the 
upper plate can either be greater or less than its single-plate coun
terpart, depending on the geometrical and thermal parameters. In 
this regard, consider first the case of Tw2 = Tw\ (upper set of curves 
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in Fig. 3). For this case, it is se 1 that the upper-plate heat transfer 
rate is lower than that of its single-plate counterpart at small sepa
ration distances, i.e., Q/Q* < 1. However, with increasing separation 
distance, the upper-plate heat transfer rate increases relative to the 
counterpart value so that Q/Q* >1 at sufficiently large separation 
distances. Under these conditions, the presence of the lower plate 
actually serves as an augmentation device with respect to the heat 
transfer performance of the upper plate. 

This behavior can be made plausible for referring to the ideas set 
forth in the Introduction. There, it was noted that the presence of the 
lower plate induces streamwise velocities in the fluid approaching the 
second plate but also tends to preheat the fluid. These factors tend 
to have opposite effects on the upper-plate heat transfer. Since the 
velocities increase as the fluid traverses the interplate gap whereas 
the temperature excess diffuses away, the temperature excess tends 
to be more important ;or small gaps while the velocity-of-approach 
is of greater importance for larger gaps. Thus, since the temperature 
excess tends to diminish the upper-plate heat transfer while the ve
locity-of-approach tends to increase the heat transfer, the trends in 
evidence in Fig. 3 are fully plausible. 

Further examination of the results for 8w2 = 1 indicates that both 
the magnitude of the Q/Q* ratio and its variation with separation 
distance are markedly influenced by the length L2 of the upper plate. 
When L2/L1 is large, the departures of Q/Q* from unity are small and, 
furthermore, Q/Q* is quite insensitive to separation distance. 
Therefore, the heat transfer performance of a long upper plate differs 
only slightly from that of its single-plate counterpart. On the other 
hand, when L2/L\ is small, the departures of Q/Q* from unity are 
appreciable, and its variation with separation distance is signifi
cant. 

In considering these findings, it is reasonable to expect that a short 
upper plate will be sensitive to conditions in the approach flow. This 
is because it provides too short a length of run to neutralize these 
initial influences and develop velocity and temperature fields that 
are characteristic of itself. Thus, if some feature of the approach flow 
tends to degrade heat transfer (i.e., preheating), the upper-plate heat 
transfer performance will be degraded. If, on the other hand, the ap
proach flow tends to enhance heat transfer (i.e., due to relatively high 
velocity), the plate will display enhanced heat transfer perfor
mance. 

A long plate, on the other hand, provides a sufficient length of run 
so that the velocity and temperature fields over most of the plate are 
little influenced by the characteristics of the approach flow. Thus, 
Q/Q* should differ only slightly from unity over the entire range of 
separation distances. 

Attention may now be turned to the other results of Figs. 2 and 3, 
namely, to cases where Tw2 ^ Tw\. Consider first the situation treated 
in Fig. 2, (Tw2 - T„) = xk(Twl - T„). In this case, when viewed from 
the standpoint of an observer situated on the upper plate, the ap
proach flow is significantly preheated. Indeed, for small separation 
distances, the fluid arriving at the leading edge of the upper plate may 
be at a higher temperature than that of the plate itself. Consequently, 
in a region adjacent to the leading edge, heat will be transferred from 
the fluid to the plate surface (i.e., negative heat transfer). Even if such 
a heat transfer reversal does not occur, the severe preheating of the 
fluid strongly inhibits heat flow from the fluid to the surface. 

In light of these remarks, the results presented in Fig. 2 appear quite 
reasonable. In general, Q/Q* < 1 for the range of parameters inves
tigated. Furthermore, for short upper plates and small interplate 
separation distances, Q/Q* is negative. Thus, the presence of a rela
tively hot lower plate a >.n severely degrade the heat transfer perfor
mance of the upper plate, and this is the main message of the figure. 
The trends of Q/Q* with L2/L\ and S/L\ are the same as those already 
identified and rationalized for the case of 6w2 = 1. 

The other investigated case where Tw2 ^ Twi is that of (Tw2 — T„) 
= 2(T,„i — T„). In this instance, when viewed from the perspective 
of an observer on the upper plate, the preheating effect is unimportant 
because of the plate's elevated temperature. Therefore, the potential 
heat transfer degradation due to preheating should be minor. With 
regard to the magnitude of the velocity approaching the upper plate, 

S/L, 

Fig. 2 Comparison of overall heat transfer at the upper plate with its sin
gle-plate counterpart, (Tw2 - r r a ) / ( rw 1 - r „ ) = 0.5 

Fig. 3 Comparison of overall heat transfer at the upper plate with its sin
gle-plate counterpart, (Tw2 - r m ) / ( r „ , , - r „ ) = 1 and 2 

it is governed by the lower plate and by the size of the interplate gap. 
Therefore, the upper-plate heat transfer enhancement due to veloc
ity-of-approach should not be very different from that for the case 
where Tw2 = Twi (i.e., for the case of dW2 = 1). 

These expectations are borne out in Fig. 3 (lower graph). There, it 
is seen that Q/Q* ~ 1 for small spacings, indicating a negligible effect 
of preheating. For larger spacings, the Q/Q* values are not very dif
ferent from those for the 8w2 = 1 case. 

An overview of the results of Figs. 2 and 3 indicates that the tem
perature level of the upper plate appears to play a stronger role when 
TW2 < Tml than when Tw2 > Tw\. Shorter upper plates are more 
sensitive than are longer plates to the presence of a lower plate. Larger 
gaps provide the opportunity for upper-plate heat transfer en
hancement compared to a counterpart single plate, and such en
hancement is actually realized except when (Tw2 — T„) is substan
tially smaller than (TwX - T„). 

The absence of prior work on stacked plates precludes any direct 
comparisons of the results presented in the foregoing. It is, however, 
interesting to make trendwise comparisons with the available ex
perimental information for stacked horizontal cylinders [6-8]. In [6], 
only a single operating condition was examined so that no trends can 
be identified. In [7] and [8], the qualitative effect of intercylinder 
spacing was found to be the same as the interplate spacing effect 
identified earlier in this paper. Specifically, at small intercylinder 
spacings, the presence of the lower cylinder gave rise to reduced heat 
transfer on the upper cylinder; at large spacings, the heat transfer was 
augmented. The other parametric explorations undertaken here, i.e., 
systematic variations of second-body temperature and length, were 
not included in the prior works. 
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Local Heat Transfer. The local heat transfer results are plotted 
in Figs. 4 and 5 for parametric values of 8U,2 equal to 0.5 and to 1 and 
2, respectively. In these figures, the ordinate q/q* compares the local 
heat flux at a streamwise station x' on the upper plate with that at the 
same station on an identical single plate. These results are plotted 
against the streamwise coordinate x' which measures distances along 
the upper plate from its leading edge. A logarithmic scale is used on 
the abscissa to enable details of the q/q* versus x' distributions to be 

nl I J i l_l i i I 1 I I I U J I L_ 
.001 .01 .1 1 5 

X'/L, 

Fig. 5 Comparison of local heat flux at the upper plate with its single-plate 
counterpart, [T„2 ~ rm ) / (7Vi — r<») = 1 and 2 

°0 0.02 0.04 0.06 0.08 O.I 
Y 

Fig. 6(a) Temperature profiles in the fluid adjacent to the upper plate, S/L1 

= 1 and 0w2 = 1 

Journal of Heat Transfer 

shown for small x' values. The curves in each figure are parameterized 
by the dimensionless separation distance S/L\. 

In appraising these figures, note should be taken of the positioning 
of the various curves with respect to the q/q* = 1 line. The latter is 
the demarcation between augmented or degraded local heat transfer 
on the upper plate compared with its single-plate counterpart. With 
the q/q* = 1 line as a reference and from the distinct differences in 
the curve shapes, it is evident that the results for the intermediate and 
large interplate spacings are of a different nature from those for small 
spacings (the S = 0 case is taken to be representative of small spac
ings). 

In general, at intermediate and large spacings, q/q* starts with 
values well in excess of unity at small x' and decreases with increasing 
x'. On the other hand, at small spacings (except for large 8wi), the 
initial values of q/q* are well below unity and then increase with x'. 
In all cases, the curves tend toward unity as x' increases. 

It is plausible to expect that with increasing distance downstream 
from the leading edge, the flow and temperature fields adjacent to the 
upper plate tend to "forget" the existence of the flow approaching the 
leading edge from below. Therefore, the tendency of q/q* to approach 
unity at large x' is entirely reasonable. However, near the leading edge, 
q may be markedly affected by the approach flow. At large and in
termediate spacings, the velocities of approach are sufficiently large 
so as to enhance the values of q relative to q*. On the other hand, for 
small spacings, the preheating of the approach flow by the first plate 
tends to degrade q. The effect of the preheating is most marked when 

< l . A s dw2 increases, the heat transfer degradation decreases, as 
can be seen by successive examination of the graphs for #,„2 = 0.5,1, 
and 2 in Figs. 4 and 5. 

Development of Temperature and Velocity Profiles. Earlier 
in the paper, mention was made of the phenomenon of a new 
boundary layer growing within an already existing boundary layer. 
This phenomenon will now be illustrated with the aid of temperature 
and velocity profiles from the numerical solutions. Figures 6(a) and 
6(6) respectively display temperature and velocity profiles that are 
typical of those encountered when a non-zero gap exists between the 
upper and lower plates (the specific profiles are for S/Li = 1 and Bw2 

= 1). 
Attention may first be focused on the temperature results of Fig. 

6(a). In the inset at the upper right, the temperature distribution in 
the fluid just upstream of the leading edge of the upper plate (i.e., at 
x'/Li = 0~)is shown.This profile is bell-shaped, as expected. The 
portion of the profile immediately adjacent to the plate surface, in 
the range 0 < Y < 0.1, is plotted in the main part of the figure. Within 
the scale of the figure, this portion of the profile is a horizontal line; 
it is seen to be the base line of the set of curves plotted in the main part 
of the figure. The other curves of the set represent temperature pro
files at a succession of axial stations immediately downstream of the 
leading edge (note the exceedingly small values of x'/L\). 

From the figure, it is seen that in the first temperature profile (at 

0 0.02 0.04 0.06 0.08 0.1 
Y 

Fig. 6(6) Velocity profiles in the fluid adjacent to the upper plate, S/L1 = 
1 and $wZ = 1 
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Fig. 7(a) Temperature profiles in Ihe fluid downstream of a step decrease 
in wall temperature, S/L^ = 0 and 0W2 = 0.5 

x'/Li= 0.0000002), 0 drops sharply from its value 8 = 1 at the wall and 
then blends into the profile for x'/Li = 0". The second profile drops 
somewhat less sharply and also blends into the x'/Li = 0~ profile, with 
the blending at a somewhat larger value of Y. This trend continues 
as the thickness of the new boundary layer increases with increasing 
x'/Li. The growth of the new thermal boundary layer within the ex
isting thermal boundary layer is vividly displayed by these pro
files. 

In the highly restricted range ofx'/Li dealt with in the main portion 
of the figure, the new boundary layer does not penetrate very far into 
the old boundary layer. However, when a larger range of x'/Li is 
considered, as in the inset of Fig. 6(a), it is evident that the new 
boundary layer ultimately engulfs the old one. 

The velocity profiles that are the counterparts of the just-discussed 
temperature profiles are shown in Fig. 6(b). The structure of this 
figure is similar to that of Fig. 6(a). The velocity profile at x'/L1 = 0~ 
is shown in its entirety in the inset, while the inner region between Y 
= 0 and Y = 0.1 is plotted in the main part of the figure, where it ap
pears as a horizontal line at the top. The message conveyed by Fig. 
6(b) reinforces that of Fig. 6(a). 

In the limiting case of S = 0 (no gap), the response of the boundary 
layer to a step change of temperature at x'/Li = 0 is somewhat dif
ferent from that illustrated in Figs. 6(a) and 6(6). For one thing, the 
plate surface is physically continuous, so that there are no dramatic 
changes in the velocity boundary layer in the neighborhood of x' /Li 
= 0. Furthermore, the temperature profile at x'/Li = 0~ is not bell-
shaped; rather, it has the form characteristic of the conventional 
natural-convection vertical-plate boundary layer. 

Profiles illustrating the thermal boundary layer development 
downstream ofx'/Li = 0 for the S = 0 case are presented in Figs. 7(a) 
and 7(b) for 0w2 = 0.5 and dw2 = 2, respectively. In the first of these 
figures, the temperature profile at X'ILI = 0~ is shown both in the 
inset at the right and at the top of the main portion of the figure. Note 
that in contrast with Fig. 6(a), this profile is not horizontal in the range 
between Y = 0 and Y = 0.1. This difference reflects the distinction 
between a bell-shaped symmetric profile and one where a temperature 
gradient must exist at Y = 0 to accommodate the wall heat transfer. 
Notwithstanding this difference, the development of the new thermal 
layer within the existing one is similar to that of Fig. 6(a). Of particular 
interest is the temperature profile at x'/Li = 0.5 shown in the inset. 
This profile is seen to have an S-shape, reflecting the strong effect of 
the preheating of the fluid upstream of x'/Li = 0. 

To complete the presentation, attention may be turned to the re
sults of Fig. 7(b) for the case of the step increase of temperature at 
x'/Li - 0. Here, as in Fig. 7(a), the x'/Li = 0" profile is seen to be 
slightly sloping even in the expanded Y scale of the main part of the 
figure. The growth of the new thermal boundary layer is as in the 
previous figures. The inset shows that the downstream temperature 
profiles are free of inflections, testifying to the fact that the upstream 
heating does not play a significant role. 

»t I 1 I ! 1 1 1 L 1 1 
0 0.02 0.04 0,06 0.08 0.1 

Y 

Fig. 7 (b) Temperature profiles in the fluid downstream of a step increase 
in wall temperature, §/L^ = 0 and dW2 = 2 

Concluding Remarks 
The natural convection heat transfer characteristics of the upper 

plate of a vertical, colinear two-plate array are affected by two at
tributes of the fluid flow spawned by the lower plate. One of these, 
the preheating of the fluid, tends to reduce the upper-plate heat 
transfer. The other, the finite velocity imparted to the fluid, tends to 
increase the heat transfer. The dominance of one or the other of these 
factors depends on the relative temperatures of the plates, the size 
of the interplate gap, and, for the overall heat transfer performance, 
the relative lengths of the plates. 

Prime attention was focused on the overall heat transfer at the 
upper plate and the relationship to that of an otherwise identical 
vertical plate, but with the lower plate absent. When the temperatures 
of the upper and lower plates are the same, the upper-plate heat 
transfer is less than that of its single-plate counterpart for small in
terplate separations, with the opposite relationship at larger sepa
rations. If the upper-plate temperature is substantially smaller than 
that of the lower plate, the preheating effect brings about a degra
dation of the upper-plate heat transfer which is accentuated at small 
interplate spacings. Indeed, at small spacings and for short upper 
plates, heat may flow from the fluid to the plate even though Tw% > 
T„. When the upper plate is hotter than the lower plate, preheating 
is unimportant and the velocity-of-approach effect generally enhances 
the heat transfer, especially at larger interplate spacings. 

In general, the overall heat transfer for the upper plate is very 
sensitive to the presence of the lower plate when the upper plate is 
relatively short. The sensitivity diminishes as the relative length of 
the upper plate increases. 

With regard to the local heat flux at the upper plate, the influence 
of the lower plate dies away at sufficiently large distances downstream 
from the leading edge. However, near the leading edge, the local heat 
flux is very sensitive to the attributes of the approach flow. 

The temperature and velocity profiles illustrate how the boundary 
layer on the upper plate grows within the already existing boundary 
layer spawned by the lower plate. In the immediate neighborhood of 
the leading edge, the new boundary layer does not penetrate very far 
into the existing boundary layer. With increasing downstream dis
tance, the new boundary layer ultimately engulfs the old one. When 
the preheating is important, the temperature profiles in the fluid 
adjacent to the second plate may be inflected (S-shaped). 
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Natural Confection on Both Sides of 
a Vertical Wall Separating Fluids at 
Different Temperatures 
This paper describes an analytical study of laminar natural convection on both sides of 
a vertical conducting wall of finite height separating two semi-infinite fluid reservoirs of 
different temperatures. The countercurrent boundary layer flow formed on the two sides 
is illustrated via representative streamlines, temperature and heat flux distributions. 
The net heat transfer between reservoirs is reported for the general case in which the wall 
thermal resistance is not negligible relative to the overall reservoir-to-reservoir thermal 
resistance. 

I n t r o d u c t i o n 
The engineering importance of heat transfer by natural convection 

is widely recognized. For example, in the area of energy conservation 
in buildings natural convection is often responsible for prohibitively 
large heat leaks to the environment. This and many other applications 
have stimulated a strong interest in the phenomenon, reflected in an 
impressive volume of research at the fundamental and applied 
level. 

A central natural convection geometry in many applications is the 
transfer of heat across a vertical wall separating two semi-infinite fluid 
reservoirs at different temperatures (see Fig. 1). This problem is of 
fundamental importance for a variety of reasons. From the insulation 
engineering point of view, it is important to know the net heat transfer 
rate across solid walls and windows separating a warm room from a 
colder environment. From the point of view of fundamental research 
in heat transfer and fluid mechanics, it is important to understand 
the interaction of two convective systems coupled across a partially 
conducting wall. 

In spite of the importance of coupled flows, the existing work on 
natural convection is centered on the study of surfaces with specified 
heat flux or temperature distributions. We are familiar with only a 
few examples which allow the heat flux and temperature distribution 
to be determined by the interaction between adjacent boundary layers 
[1, 2]. Recently, the first author developed an approximate solution 
based on the hypothesis that the wall heat flux is uniform [3]. This 
analysis is outlined in the Appendix. The only other attempt to ana
lyze the configuration shown in Fig. 1 appears to be due to Lock and 
Ko who reported a numerical solution for heat transfer valid in the 
limit where the solid wall thermal resistance is negligible [4]. 

Our objective in this paper is to present an analytical solution for 
the problem of two countercurrent free convective flow fields sepa
rated by a vertical plate with a wide range of conductive resistance. 
The great advantage of an analytical approach is that the parametric 
dependence of the heat transfer mechanism is considerably more 
visible than in a numerical solution. To our knowledge, the present 
report contains the only analysis and results applicable to situations 
in which the solid wall thermal resistance is not negligible relative to 
the two boundary layer resistances formed on either side of the 
wall. 

M a t h e m a t i c a l F o r m u l a t i o n 
In dimensionless form, the equations expressing conservation of 

mass, momentum and energy for each boundary layer shown in Fig. 
1 are 

du dv 
+ : 

dx dy 
1 d I du du1 

\u 1- o — 
Pr dy\ dx dy, 

0 

dt_ d^u 

dy dy3 

(1) 

(2) 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
December 3,1979. 

dt dt d2 i 
u — + u — = 

dx dy dyz 

X 
x = — 

H 

y=Y/£ 

t=[T-(TH
Jr Tc)/2]/(TH - Tc) 

(3) 

(4) 

(5) 

(6) 

The height of the wall, H, is used as length scale in the vertical di
rection. The horizontal length scale of the boundary layers is £, while 
TH and Tc are the dimensional temperatures of the hot and cold 
fluids. It can be shown via dimensional analysis that [5] 

£ = [paH/PgAT]l/* (7) 

while the vertical velocity scale is aH/£2 

In writing equations (1-3) the terms involving viscous dissipation 
and gravity work have been ignored. It was assumed that the 
Boussinesq approximation applies, i.e., that the bouyancy force is 
proportional to the local temperature difference. The dependence of 
all other physical properties upon temperature was neglected. 

The appropriate boundary conditions in the horizontal (y) direction 

-Y T, 

Fig. 1 Schematic of vertical conducting wall with natural convection 
boundary layers on either side 
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•u = Oaty = ±w/2 (8) (to + ' %) 

(10) 

t = =FV2aty= ±°° (9) 
In addition, at any given vertical position (%) the heat flux entering 
the left face of the plate must equal the flux leaving the right face, 

ldt_\ =ldt\ . ku 

\dyjy=-ui/2.x \dyjy=w/2,x 

An important observation is that the governing equations and 
boundary conditions (1-10) remain unchanged after simultaneously 
changing the sign of u,v,x,y and t. Therefore, the temperature and 
velocity fields are centro-symmetric with respect to the origin of the 
x-y coordinate system shown in Fig. 1, 

k/ \d;y/waii 

u(x,y) = -u(- x,-y), 

v(x,y) = -v(-x,-y) 

t(x,y) = -t(-x,-y). 

(11) 

(12) 

(13) 

Equations (1-3) are difficult to treat analytically due to the non-
linearity in the convection part of the energy equation. One way to 
circumvent this difficulty is to linearize the energy equation according 
to the modified Oseen technique developed by Gill [5]. In a recent note 
Bejan [6] showed that Gill's technique produces excellent overall heat 
transfer results. Linearization is accomplished by regarding v and 
dt/dx in equation (3) as unknown functions of altitude, v{x) and t' 

(*). 
Consider the limit Pr —• «>, in which the boundary layer equations 

become 

du/dx + dvjdy = 0 

dt/dy + dau/dy3 = 0 

dt d2t 

(14) 

(15) 

(16) (t')u +(u) 
dy dyz 

As shown in the Appendix and Fig. 8, the Pr —>• <*> approximation is 
acceptable in the case of fluids with Prandtl number of order one or 
greater. Eliminating t between equations (15) and (16) leads to a 
fourth order ordinary differential equation in u(x,y). The solution 
to this equation has the general form 

" = £ An(x)ex"^y (17) 

where Xn are the roots of the characteristic equation 

X3(X - iJ) + t' = 0 (18) 

Applying the boundary conditions and symmetry properties, equa
tions (8-13), we obtain 

tc 

-fa-Q + y2) /2). 
(Xi2 - X2

2) 

(to - Q + y2) 

3X2(y-u)/2)) 

UH : 

(Xl2 - X2
2) 

- ( t o + Q - % ) 

(£l2 - h2) 

(Xi2ex i(>""' / 2) - X2
2ex2^-""/2 ' ) - V2 

(e-fi(>+"'/2) - e-(i(y+u>/2)) 

(19) 

(20) 

(21) 

tH = " ^ - - - (tfe-^y+«>n) - tfe-H(y+«m) + y2 (22) 
Ui - kr) 

In the above equations to(x) is an unknown function representing the 
temperature distribution along the midplane y = 0. For reasons dis
cussed in detail by Gill [5], Xii2 are the roots with negative real parts. 
In addition 

£1,2 = -Ai,2(-*) 
and 

wldt\ 

2 (dy/wali 

Since Xi |2 and £i |2 are all solutions of equation (18) we can write 

(23) 

(24) 

(X - Xx)(X - X2)(X + &)(A + &) = 0 (25) 

Expanding result (25) and comparing it with equation (18) we ob
tain 

D,U) = X1 + X 2 - ( ? i + ?2) (26) 

t'(x) = (AiA2)(£i£2) 

?i?2 + XiX2 = (Xi + X2)(?i + &) 

(XiX2)(£! + &) = «ife)(Ai + X2) 

(27) 

(28) 

(29) 

The solution is simplified if we define two new functions of x, p (even) 
and q(odd), 

p = Ai + A2 + £i + £2 (30) 

(31) 

Combining these definitions with equations (26-29) allows expressions 
for Xij2 and £i?2 in terms of the unknown functions p{x) and q(x) 

--ViPd + q) 

y 2 p ( i - g ) 

Xi + X2 = 

£1 + b --

XiX2 = y 8 p 2 ( i - Q 2 ) ( i + <?) 

W 2 = y s P 2 ( l - ( ? 2 ) ( l - g ) 

Xi,2 = y 4 p ( l + 9)[1 ± iVT=2q~\ 

h,i = ViP (1 - <?)[! ± i v W + T ] 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Functions p and q can be determined from the heat flux continuity 
constraint, equation (10), and the condition that the linearized so
lution (19-22) must satisfy the energy equation in intergral form 

— utdy\ + 
dx \Jo I 

ot (38) 

As parameter w approaches zero, the vertical wall becomes a thin 
membrane whose face-to-face temperature difference is negligible 
compared with the overall AT between the fluid reservoirs. Substi
tuting w = 0 into equations (19-22) and utilizing the heat flux con
straint (10) we find 

(% - to)[(fi + £2)2 - Mi] (% + to)[(Ai + X2)
2 - XiX, 

(£1 + £2) (Xi + X2) 
(39) 

.Nomenc la tu re . 

• fffc B ^ = wall local Biot number, hx 

g = gravitational acceleration 
Gr = Grashof number, Ra/Pr 
H = wall (window) height 
K = constant of integration 
£ = horizontal length scale, equation (7) 
Nu = Nusselt number, hH/kf 
p = even function of x, equation (30) 
Pr = Prandtl number 
q = odd function of x, equation (31) 
Q = wall temperature drop, equation (24), 

Bix/2 

Ra = Rayleigh number, g/3HsAT/(av) 
T = temperature 
u = vertical velocity 
v = horizontal velocity 
W = wall thickness 
X - vertical position 
Y = horizontal position 
a = thermal diffusivity 
|S = coefficient of thermal expansion 
v = kinematic viscosity 
\p = streamfunction 
co = wall parameter, equation (53) 

Subscripts 

C = ambient conditions on the cold (right) 
side of the plate 

/ = fluid 
H = ambient conditions on the hot (left) side 

of the plate 
w = wall 
0 = conditions at midplane of plate 
03 = ambient conditions on either side of 

plate 
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The integral energy constraint (38) applied to each side of the mem
brane yields 

d_ 

dx 
d_ 

dx 

(ti + y2)
! 

.(Xi + X2)
3J 

(to " %) 

2(t0 + %)(Xi8 - A23) 

(Xl2 - X2
2) 

2 ( t0 -V2) (? l 3 -?2 3 ) 

m + &)8J (f i2 - h2) 

In terms of p and g, equation (39) can be written as 

to = -<?/(l + g2). 

Finally, writing equations (40) and (41) in terms of p and q, adding 
side by side and integrating the result once yields 

(40) 

(41) 

(42) 

[(1 - q)7 + (1 + t?)7]i/3/[K(l - q2)(l + q2)2/a] (43) 

Parameter K appearing in equation (43) is an arbitrary constant of 
integration. Substitution of equation (43) into equation (40) produces 
a first order ordinary differential equation for the unknown function 
x(q), 

dx 
-112K 4( l + (J2)5/3(l- (j2)5]/[(1 . ' + (1 + q)1} 717/3 (44) 

function K(co) is listed in Table 1. An important value in this table 
is K(0) = —0.6362 which corresponds to the thin wall limit; this value 
can also be obtained by integrating equation (44) subject to conditions 
(48-50). 

Results 
Figures 2(a,b) illustrate a set of representative streamlines and 

isotherms obtained in the thin wall limit (co = 0). The streamfunction 
\j/ was defined in the usual way by writing u = itip/dy and v = —d\j//dx. 
As in Fig. 1, the warm reservoir is on the left side of the picture. The 
streamlines reveal a descending boundary layer on the warm side 
coupled with a centrosymmetric ascending boundary layer on the cold 
side. In the vicinity of the solid wall (y = 0) the isotherms are nearly 
parallel, particularly in the central region. This feature implies that 
the heat flux is nearly constant along the wall, as shown by the curve 
a) = 0 in Fig. 6. The slight tilt of the isotherms indicates that the 
boundary layers transfer heat from the upper left to the lower right 
across the thin wall. 

The wall temperature distribution resulting from the coupled flows 
is summarized in Figs. 3 and 4. In Fig. 3 we plotted the temperature 
distribution in the mid-plane (y = 0) of the vertical wall, for a series 

The boundary conditions necessary for solving (44) are based on 
the approximation that the vertical velocity and horizontal temper
ature gradient are zero at the beginning of the two boundary 
layers. 

u = Oat-oo <y < 0, x = +V2 

— = Oaty = 0,x = ±V2 
dy 

(45) 

(46) 

(47) 

Condition (45) can be satisfied if to = _ 1 /2 or, Xi,2 —• °° when x = 
—y2. This is equivalent to setting q = 1 in expression (42). 

q = +1, to = -V2atx (48) 

Applying similar arguments to the descending boundary layer in the 
hot fluid leads to the result 

- 1 , t0=y2atx = V2 (49) 

Since to is an odd function of q in (42) it is also an odd function of x, 
hence 

to = 0, q = 0 at x = 0. (50) 

Wall w i t h F in i t e T h i c k n e s s 
A procedure similar to that used for the thin membrane was also 

applied to the more general case of finite w. Substitution of equations 
(19-22) into equation (10) yields 

to= - < 7 ( l - 2 Q ) / ( l + q2) (51) 

Q = - w p ( l - <?2)2/[16(l + q2) - 2G>P(1 - q2)2] (52) 

(53) co = LHa1/4. 
Hkw 

As shown in the Nomenclature, 2Q is the wall local Biot number, Bi*. 
When the energy integral (38) is applied to the cold side one finds 

"T Kto - Q + y2)7[p3(l + Q)s]\ = - Q / 2 « . (54) 
dx 

Adding this result to the corresponding energy integral for the hot side 
and integrating once produces 

(1 - q)i + (1 + q)i 

[4(1 + q2) - - p ( l - q2)2]2p3(l - q2)s 

K3 , , 

« (55> 

where if is a constant of integration. The value of this constant was 
determined by integrating equation (54) numerically, trying different 
values for K until conditions (48-50) were satisfied. The resulting 

Table 1 Constant K and overall heat transfer rate 
Nu/Ra1 / 4 as a function of w 

K INu/Ra1/4! 
0 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

10.0 
20.0 

0.6362 
0.6232 
0.6113 
0.6004 
0.5903 
0.5809 
0.5422 
0.4891 
0.4529 
0.4259 
0.4047 
0.3390 

0.2575 
0.2422 
0.2285 
0.2164 
0.2057 
0.1961 
0.1594 
0.1170 
0.0929 
0.0773 
0.0663 
0.0389 

Fig. 2(a) Streamline pattern 

Fig. 2(6) Temperature field, in the thin wail limit (00 = 0) 

Fig. 2 
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O.S 

Fig. 3 Temperature distribution In mid-plane (y = 0) 

0.5 

Fig. 4 Temperature distribution over the solid surface facing the cold res
ervoir 

&5 

Fig. 5 Comparison of the present result ( — ) for surface temperature against 
the numerical solution of Lock and Ko ( — ) Fig. 6 The distribution of heat flux along the vertical wall 

of values of thickness parameter co. The mid-plane temperature be
comes more and more uniform as the wall thermal resistance in
creases, i.e., as the thermal contact between the two boundary layers 
deteriorates. Figure 4 shows the corresponding temperature distri
bution on the surface facing the cold reservoir; the results for the 
surface facing the warm reservoir are readily obtained by rotating Fig. 
4 by 180 deg. It is clear that as the wall becomes thicker the surface-
to-surface temperature difference increases to the point where, for 
co = 20, it is roughly 80 percent of the reservoir-to-reservoir temper
ature difference. 

In their numerical study of the same phenomenon, Lock and Ko 
[4] graphed results for Pr = 0.72 and a limited range of wall thickness, 
a>. In Fig. 5 we compare our results for cold side surface temperature 
with the results of Lock and Ko, for co = 0 and co = 1. The two solutions 
agree in an average sense, although the numerical solution [4] de
scribes a relatively more uniform surface temperature in the central 
region of the plate. The constant flux solution developed in the Ap
pendix predicts that the surface temperature distribution will become 
more nearly isothermal as Pr -» 0. Hence, the discrepancy between 
the two sets of curves on Fig. 5 is attributed to the different Prandtl 
numbers used in each investigation. 

The wall heat flux is presented in Fig. 6 as the horizontal temper
ature gradient {dt/dy)y=w/2. The heat flux decreases as the thickness 
parameter co increases. This effect is to be expected since a thicker 
wall means more effective insulation between the two reservoirs. 

Regardless of co, the wall heat flux is nearly uniform oyer most of 
the height H. This observation is the basis for the constant heat flux 
analysis [3] summarized in the Appendix. In this analysis the wall heat 
flux is assumed independent of vertical position x and the natural 
convection problem of Fig. 1 is reconstructed by piecing together two 
Sparrow and Gregg [7] solutions for convection along a vertical con
stant heat flux surface, via pure conduction through a wall of finite 
thickness. The cold surface temperature distribution predicted by 
the constant heat flux analysis is presented in Fig. 7 vis-a-vis results 
based on the analysis developed in this paper. The agreement is ex
cellent expecially as co increases, which is the limit where the constant 
heat flux assumption is more appropriate. 

Overall Hea t Trans fe r 
Defining the heat transfer coefficient in terms of the average heat 

flux through the wall and the total temperature difference between 
fluid reservoirs 
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0.5 

Fig. 7 Comparison of the present result for cold surface temperature ( — ) 
against the result based on the constant heat flux approximation ( — ) 

C o n c l u d i n g R e m a r k s 
In this paper we analyzed the fundamentals of laminar free con-

vective heat transfer across a vertical wall sandwiched between two 
fluid reservoirs at different temperatures. In order to gain some insight 
into the fluid mechanics and basic heat transfer mechanism we con
structed an analytical solution based on the Oseen linearization ap
proach without making assumptions about the heat flux or temper
ature distribution at the wall. We were able to illustrate streamlines 
and isotherms for the flow field. We also presented results for the 
distribution of temperature and heat flux along the vertical wall. The 
effect of increasing wall thermal resistance was documented. 

The engineering importance of this study is that it reports means 
for estimating the reservoir-to-reservoir heat transfer for cases in 
which the thermal resistance of the wall is not negligible. Prior to our 
study, the heat transfer literature contained information on overall 
heat transfer only in the limited range 0 < co < 1. Another conclusion 
of our study is that the vertical wall can be approximated as a constant 
flux surface and that the overall heat transfer rate is relatively inde
pendent of Prandtl number, for Pr of order 1 or larger. 
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Fig. 8 Dependence of total heat transfer rate on wall resistance parameter 
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the Nusselt number can be written as 

Eh H I dt\ 
Nu = — = - — = R a 1 M , , 

kf £ \dy/y=uj/2 \dy/y=« 
Figure 8 shows the Nusselt number predicted by our solution and the 
estimate based upon the constant flux approximation for Pr = 0.72 
and Pr —>• °°. The agreement between the two solutions is excellent 
over the entire o> range of interest. The ratio Nu/Ra1 /4 decreases 
substantially as the wall thickness increases from 0 to 10. Recalling 
that the present solution was obtained in the limit Pr - • <*> and that 
the constant heat flux result is Pr dependent, Fig. 8 demonstrates that 
the overall heat transfer rate is a weak function of Pr provided Pr is 
of order one or greater. Representative values for Nu/Ra1 /4 for the 
present solution are shown in Table 1. 

Overall heat transfer calculations in the range examined by Lock 
and Ko are presented in the inset of Fig. 8. The numerical result [4] 
predicts a weaker dependence on wall thickness than either the 
present solution or the constant heat flux analysis. 

APPENDIX 
C o n s t a n t H e a t F l u x Ana lys i s 

Sparrow and Gregg [7] report the following wall temperature dis
tribution for a constant flux surface 

Tw-T„ •f(vATxUb -1/5 
(Al) 

where Tw and T„ are the dimensional temperatures at the wall and 
at infinity, and X is the distance measured from the start of the 
boundary layer. The temperature at X = H/2 on the surface facing 
the cold fluid is 

TH + TC Wkf_ldT\ 

2 fe^ldY/i 
(A2) 

2 2 kw\dYJY=w/2 

Substituting this for Tw in (Al) and rearranging we find 

| ( fe / 4 / B ) (^) 1 / 6 / [ (H/2) 1 / B / (Pr) ] 

(A3) 
which, in combination with (Al), yields 

Tw-T. 1/ ldt\ W X \ i / s 

„„ A T / Idt 

dy/y="j/2, 

AT 
1 / Idt 

••- 1 + w — , 
2 \ \dy/y=u>/2, J \H/2j 

Defining h as g/AT, the Nusselt number is 

hH ^ G r ^ d + J B ^ 
\dyly=w/2, 

Nu = -

(A4) 

(A5) 
kf 2[/(Pr)]5/4 

Sparrow and Gregg [7] report a solution for /(Pr) derived using the 
Karman-Pohlhausen method, 

I \5/4 25/4 Pr1 /2 

tc f(Pr)/ (360)1/4 (0.8 + Pr)1 / 4 

Substituting now (A6) into (A5) we obtain 

Nu = 
Pr 

0.8 + Pr 

1/4 Ral/4 
l + O ) 

dt\ 

Since 

(180)1/4 I \dy/y=u>/2. 

h=jiL[m=hm 
&T\dYl £ \dyj. 

5/4 

'jy=w/2 

(A6) 

(A7) 

(A8) 
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Table Al Nu/Ra1 / 4 for constant heat flux solution 

01 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

10.0 
20.0 

Nu/Ra1/4 

Pr = 0.72 
0.226 
0.214 
0.203 
0.194 
0.185 
0.177 
0.147 
0.110 
0.088 
0.074 
0.064 
0.038 

P r = co 

0.273 
0.256 
0.241 
0.227 
0.215 
0.205 
0.165 
0.120 
0.095 
0.079 
0.067 
0.039 

we can write 

Nu = Ra1/*(—) 

Combining (A9) and (A7) results in 

y=w/2 

n 
\dy]y=w/2 

= |1 + C0|^J I 
dyly=w/2j 

\B/4 Pr 1/4 

(A9) 

(AlO) 
(0.8 + Pr)(180)j 

Equation (AlO) was solved numerically to establish the relationship 

between dt/i>yy-w/2 and co. Temperature distributions for the constant 
flux approximation are shown in Fig. Tand the variation of Nu/Ra1/4 

with o> is shown in Fig. 8. Values for (dt/dy) are shown in Table Al. 
Note that | dt/dy | decreases with Pr. Equation (A4) implies a wall 
temperature distribution which is more isothermal in the central re
gion of the plate for small values of Pr. 
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Onset of Natural Confection from a 
Suddenly Heated Horizontal 
Cylinder 
A study of the onset of transient natural convection from a suddenly heated, horizontal 
cylinder of finite diameter is presented. The termination of the initial conductive and "lo
cally" convective heat transfer regime which precedes the onset of global natural convec
tion is treated as a thermal stability phenomenon. An analysis is presented wherein the 
effects of finite cylinder diameter, cylinder heat capacity, and cylinder thermal conduc
tivity are included in calculations of the convective delay time. A simple experimental 
apparatus is described and data presented. The thermal stability analysis is confirmed 
experimentally and data is presented which indicates localized natural convection prior 
to global motion. 

I n t r o d u c t i o n 
There is a large body of transient natural convection literature 

concerned with problems involving vertical elements. In these cases, 
the transient following a step change in wall temperature or heat flux 
is known to consist of three relatively distinct regimes. The initial 
regime is characterized by pure conduction. Then fluid motion begins 
as the diffusion of heat from the body establishes variations in the 
density field. Finally, the convection currents become established and 
dominate the heat transfer. 

Few studies have been carried out which attempt to define the 
typical characteristics of the transient free convection from horizontal 
cylinders, spheres, and other bluff geometries. Only three experi
mental investigations, for example, have been performed which deal 
directly with the transient free convection from a horizontal cylinder. 
These investigations of Ostroumov [1], Vest and Lawson [2], and 
Parsons and Mulligan [3] have dealt with the phenomena of heat 
transfer overshoot and convective delay for the case of suddenly 
heated fine wires. In the work of Ostroumov, an optical technique was 
used to observe the transient pattern of the temperature field around 
a fine wire, and a resistance bridge was used to measure the actual 
temperature response of the wire. A delay in the convective motion 
was observed optically in that the isotherms around the wire appeared 
to remain approximately concentric for a certain time before they were 
distorted by convective motion. This "delay time" was empirically 
correlated against the power input to the wire. A global type theory 
for predicting this delay time was then sketched wherein a certain 
volume of liquid, characterized by the penetration depth of the 
temperature field, must be heated until its buoyancy overcomes the 
viscosity of the surrounding liquid at which point it breaks away from 
the wire. This development, however, was left incomplete. Vest and 
Lawson went further by actually formulating this concept for the 
prediction of the delay time based on the hypothesis that the gov
erning mechanism is that of thermal stability. An analogy was drawn 
with the classical Benard problem of a fluid layer heated from below, 
with the conduction regime breaking down at a critical Rayleigh 
number defined on the basis of temperature penetration depth. Ex
cellent agreement was obtained with their optically observed de
lays. 

The stability theory was also confirmed by the authors [3] for the 
fine wire case using actual wire temperature versus time measure
ments and a comparison with an analytical conduction solution. It 
was also observed that some modifications of the theory would allow 
an extension to other important applications. Notably, the theory as 
developed for fine-wire work has the severe limitation of only being 
applicable in the case of small diameter wires with essentially infinite 
thermal conductivity and negligible thermal capacity, conditions 

seldom met in real physical situations. The primary purpose of the 
present work is to present an extension of the stability theory for the 
more general case of finite diameter cylinders with general heat 
transfer properties and to present the results of an experimental 
verification of the extended theory. 

Theory 
When a horizontal cylinder is subjected to sudden constant heating, 

the heat transfer to the surrounding medium is initially by pure 
conduction. The thermal stability hypothesis is that the conduction 
regime breaks down and global convective motion begins when the 
conduction temperature field penetrates to a certain critical depth. 
This concept, as applied here, pertains strictly to the flow conditions 
occurring at the top of the cylinder and presumes no motion of the 
fluid for a certain period of time. 

While there is considerable experimental evidence to support this 
lack of global motion for a fine wire, a consideration of the physical 
situation for a cylinder of finite diameter suggests that on the sides 
of the cylinder the fluid is unstable as soon as any temperature gra
dient is generated. The density gradient normal to the direction of 
gravity should therefore produce a local circulation starting imme
diately. The global stability theory utilized here rests on the as
sumption that local circulations at the side of the cylinder, if and when 
they occur, are small in effect until some minimum temperature 
gradient is exceeded and do not, themselves, significantly alter the 
temperature distribution within the solid cylindrical material from 
that which would exist if the external heat transfer were by pure radial 
conduction. The observation of such small local movement has been 
beyond the objectives of prior work, although a major objective in the 
present experimental work. 

It is assumed here that the process occurring at the uppermost point 
on a heated cylinder is essentially the thermal stability problem of 
a fluid layer heated from below. The Benard problem represented by 
a constantly imposed temperature difference across a horizontal layer 
with one fixed and one free boundary has an instability which occurs 
at a critical Rayleigh number of approximately 1100 [4j. While the 
Benard instability criteria may not be perfectly representative of the 
physical boundary conditions of the present problem, a computational 
procedure employing it was found to be successful by Vest and Law-
son. In the present analysis a comparable procedure is employed 
wherein the critical Rayleigh number is evaluated from the expres
sion 

Raj = gP(Tw - T„) e SWcz/kz/i (2). 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by The Heat Transfer Division 
February 29, 1980. 

where 6 is the penetration distance of the conductive temperature field 
into the surrounding medium and (Tw — T„) e is an equivalent tem
perature differential. The latter quantity is computed by constructing 
a linear temperature distribution from the surface to 8 which, when 
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integrated, yields the same value as the integrated exact temperature 
distribution from the surface to <5. Thus, (Tw - T„)e represents twice 
the average temperature excess in the penetration zone. It should be 
noted that the theory does not require the initial numerical specifi
cation of Raj and that, in fact, this value could await empirical de
termination. However, there is sufficient experience [1-3] with fine 
wire data to warrant the assumption of the value of 1100. 

In computing the actual T(t) profile Vest and Lawson used an 
approximate solution for the temperature distribution in the sur
rounding fluid and an analysis applicable specifically to very fine wires 
which did not require allowances for the heat capacity or thermal 
conductivity of the cylinder itself. For this more general case of a fluid 
surrounding a cylinder of radius, a,r> a, which is subjected to a step 
change in input heat rate at t = 0, the temperature distribution is 
given by Carslaw and Jaeger [5] as 

T- T„ 

where 

aq' r° 

ir2ko Jo 
(1 - exp(—TU2)) J o | - U u Y o M - a Y x i u ) ] 

- y 0 H M o ( u ) - a J i ( u ) ] 
du 

u2A(u) 

A(u) = [uJ0(u) - aj^u)}2 + [Y0(u) - a y * ) ] 2 

(2) 

(3) 

for the case of finite cylinder heat capacity but infinite cylinder 
thermal conductivity, and 

T-T« 
2q'K ,1/2 0 Ko / * °° 

——— | (1 - exp(-Km2t))=/i("a). 
•Kiai Jo 

du 
[J0(Kaur)<j>(u) - Y0(K3ur) 4>(u)] 

u*[<t>2(u) + \p2(u)} 
(4) 

where 

\j/(u) = kiK21/2Ji(au)Jo(K3au) — k2Ki1/2Jo(au)Ji(Kaau) (5) 

(j>(u) = kiK21/2 Ji(au)Y0(K3au) - k2Ki1/2 J0(au)Yi(Ksau) (6) 

for the case of a cylinder with general properties. In the present theory, 
these expressions determine the variation of the temperature distri
bution in the surrounding fluid with time for prescribed values of the 
linear heating rate, material properties, and cylinder diameter. These 
profiles are then averaged and the quantity (Tw — T„) e determined 
versus time, which then allows the computation of the time required 
to exceed Raj = 1100 under various conditions. This time is referred 
to as the convective delay time. 

E x p e r i m e n t s 
Experiments were designed and conducted to verify the previous 

theory as well as clarify the existence of local convective motion prior 
to global instability. The apparatus consisted of a 0.632 ± .0013 cm 
dia mild steel rod, 37.1 cm long, which was mounted in a test chamber 
constructed of fiberglass coated plywood and covered with styrofoam 
sheet for insulation purposes. The diameter of the rod was determined 
by multiple measurements with a precision micrometer. The rod was 

B^ 

Fig. 1 Cylinder cross-section and thermocouple locations 

heated by applying direct current from an 18 V, 500 amp power sup
ply. The power supply output voltage could be varied to regulate 
power to the rod. A power dissipating resistor consisting of a copper 
coil in a water bath was constructed to absorb excess power. 

The rod was mounted in two phenolic-board supports 31.8 cm 
apart, and fine thermocouple wire was strung along the rod between 
these supports. The location of the thermocouples is shown in Fig. 
1. Thermojunctions labeled A+ and A— were formed at the top and 
bottom of the rod, one junction 0.16 cm above the rod and the other 
the same distance below. Since the bottom junction served as a ref
erence the thermocouple output represented a difference between the 
temperature above and below the cylinder at mid-cylinder. The 
purpose of this measurement was to determine the instant of global 
fluid motion and thus provide data necessary to confirm the stability 
analysis of large diameter cylinders. 

In configuration B, the two thermojunctions were moved to the side 
of the rod, approximately 0.25 mm off the rod surface, with one 
junction 0.38 mm above the midplane and the other the same distance 
below. The purpose of these experiments was to observe local fluid 
motion or "washing" of the cylinder sides speculated to occur prior 
to global fluid motion. In the experiments a deliberate effort was made 
to avoid the spurious indications which can sometimes be attributed 
to thermocouple unresponsiveness. Small 36 AWG wire was used and 
thermojunctions with a bead diameter of approximately I-V2 wire 
diameters were formed by welding. The junctions were then always 
used in pairs to indicate a deviation. The actual placement of the 
junctions relative to the surface of the cylinder was determined using 
a gauge measure and nominally accurate to within the micrometer 
accuracy of 0.025 mm. 

Preliminary experiments were performed to determine the behavior 
of the system upon sudden and constant internal heating. Both the 
current delivered by the power supply and the voltage drop across the 
rod were measured during the transient and were found to remain 
constant to within ±2 percent during the period of interest (initial 
10 s). Some variations were expected because of finite capacity of the 
power supply and heating effects of both the rod and power dissi
pating resistor. However, because the temperature rise of the rod 
during the transient experiments was slight and only of the order of 
several degrees, the electrical resistance of the rod and the internal 

. N o m e n c l a t u r e . 

a = radius of cylinder 
Bi = Biot number, hd/ki 
c = specific heat at constant pressure 
d = diameter of cylinder 
g = gravitational acceleration 
Gr = Grashof number, gfi(Tw - T„) 

h = convective heat transfer coefficient, 
q'frd(Tw - T„) 

k = thermal conductivity 
k* = thermal conductivity parameter, 

W&i 
Nu = Nusselt number, hd/k2 

Pr = Prandtl number, c2p.lh2 

q' = cylinder linear heat rate 
r = radial coordinate from centerline of cyl

inder 
Ra = Rayleigh number, Gr-Pr 
Ra* = modified Rayleigh number based on 

heat rate, Ra-Nu 
Raj = Rayleigh number based on penetration 

depth 8 
t = time 
T = temperature 
Tw = cylinder wall temperature 
T„ = bulk fluid temperature 
a = heat capacity parameter, 1p2c2lp\c\ 
j9 = coefficient of thermal expansion of 

fluid 
S = penetration depth of temperature field 

around cylinder 
K = thermal diffusivity, k/pc 

K3 = VKI/K2 

ix = dynamic viscosity of fluid 
p = density 
T = Fourier number, 4K2t/d

2 

TD = Fourier number at the onset of signifi
cant convection, referred to as delay time 

Subscr ip ts 

1 = a property of the cylinder 
2 = a property of the surrounding medium 
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heat generation within the rod were considered essentially constant. 
The external convective heat transfer, however, varied during the 
course of the transient. The electrical resistance of the rod was de
termined from these measurements to be 0.00232 ± 0.00006 fl. During 
a typical test run, then, a sudden and constant current was imposed 
on the rod and the thermocouple output monitored on a high speed 
oscillograph. The error inherent in detecting the onset of fluid motion 
from the thermocouple trace was estimated to be ±10 percent. The 
voltage drop across the rod was also monitored and the power input 
calculated using the known resistance of the rod. Between test runs 
the test chamber was closed and 1-2 hr allowed for the air inside to 
become quiescent. 

Results and Discussion 
The temperature response of the two thermocouple arrangements 

shown in Fig. 1 are illustrated for a typical test run in Pig. 2. The 
temperature difference from the top to the bottom of the rod (ther
mocouple A) remained at zero for a distinct number of seconds after 
power was applied and then abruptly moved away from zero, marking 
the point at which the onset of significant global convective motion 
occurred. Confirmatory runs were made with the thermocouple 
junctions both closer and farther away from the cylinder surface than 
the 0.16 cm used for the majority of the test runs. These data dem
onstrated the expected behavior that once global fluid motion is ini
tiated, the change to significant convective motion is essentially in
stantaneous. No experimentally significant difference in delay time 
was detected between the different thermocouple spacings. 

In configuration B, wherein the two thermojunctions were moved 
to the side of the cylinder, localized motion was detected in the form 
of slight but distinct temperature differences starting essentially in
stantaneously after power was applied, significantly prior to the delay 
time. These results are illustrated in Fig. 2. While this behavior may 
lower the local cylinder wall temperature by a small amount, this ef
fect was not found to be significant in altering the pure conductive 
instigation of global fluid motion governed by the stability of the fluid 
at the top of the cylinder. If the local washing was of sufficient mag
nitude to disrupt the stability mechanism, then the trace of thermo
couple A would be expected to depart from zero much less abruptly, 
and at roughly the same time as the thermocouple B trace. Clearly, 
this does not happen. 

Analytical results describing the global stability phenomenon were 
developed by numerically integrating the temperature response 
equations (2-6) for a general property cylinder. These expressions 
were solved for the delay time at which Ras = 1100, this critical 
Rayleigh number having been previously verified as applicable to the 
fine wire case. The results are shown in Figs. 3 and 4. The effect of 
diameter alone was removed by using the nondimensional Fourier 
number and modified Rayleigh number for time and heat rate, re
spectively. The delay time was found to be very sensitive to the ratio 
of the heat capacities of the cylinder and media a and relatively in
sensitive to the ratio of thermal conductivities k*. 

The dimensionless delay time TD is plotted in Fig. 3 as a function 
of dimensionless heat rate Ra* with the heat capacity ratio a as a 
parameter. The line labeled a -*• °° is equivalent to the expression 
given by Vest and Lawson for negligibly small wires. The effect of 
finite size of the cylinder in terms of allowing for its heat capacity is 
clearly shown. Values of a for various pertinent combinations of 
cylinder and medium materials are shown in Table 1. Typical values 
are 0.001 for a metallic conductor in air and 2.0 for a metal cylinder 
in water. It is apparent that the retarding effect of heat capacity is 
significant for very fine wires in air or gaseous media as shown by the 
marked deviation from the a —- °° line even for very small Ra*. 

Figure 4 compares the analysis to the available data. Shown are the 
wire data of Vest and Lawson (0.203 mm dia tungsten), the wire data 
of Parsons and Mulligan (0.030 and 0.127 mm dia platinum), and the 
cylinder data of the present experiment (6.32 mm dia mild steel). The 
prediction line A-A for air data is shown disjointed because the value 
of a was slightly different for comparison with each data set due to 
the different cylinder materials. The agreement of the data from this 
experiment—the air data of Parsons and Mulligan, and the water data 
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Fig. 4 Comparison of the convective delay correlation with available 
data 

of Vest and Lawson—is seen to be excellent. The deviation of the data 
from the prediction is approximately ±20 percent, which is considered 
to be quite good taking into account the extreme range of parameters 
considered. The air data of Vest and Lawson are not in as close 
agreement. The theory would predict that the heat capacity of their 
wire could have delayed convection more than it apparently did. A 
possible explanation is the greater percentage inaccuracy which would 
be expected in air data relative to the water data due to the difficulty 
in measuring the much shorter air delay times with a fixed precision 
technique. 

It was concluded from a thorough comparison of the analysis using 
the general equations (4-6) in place of the infinite conductivity 
equations (2) and (3) that for practical cases the thermal conductivity 
of the cylinder has an insignificant effect on the stability analysis. This 
can be seen by considering the familiar criteria that a lumped (infinite 
ki) analysis is appropriate if the Biot modulus is less than 0.1. The 
Biot number is defined as hd/ki where, in this case, h is a function of 
time, infinite at t = 0 and rapidly decreasing thereafter. The transient 
Biot number, then, can be expressed as Nu(t)-/?*. Values of k* for 
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Table 1 Values of the property ratios a and k* for 
common conductors in air and water 

In Air In Water 

Material 

Aluminum 
Brass 
Bronze 
Constantan 
Copper 
Platinum 
Steel 

0.5% C 
1.0% C 
1.5% C 

Tungsten 
Nominal 

Ranges: 

(2p2c2) 
a 

PlCl 

0.00097* 
0.0072 
0.00079 
0.00064 
0.00068 
0.00082 

0.00065 
0.00064 
0.00062 
0.00090 

(0.0006 — 
0.001) 

ki 

0.00013 
0.00023 
0.00099 
0.0011 
0.000067 
0.00036 

0.00048 
0.00060 
0.00071 
0.00016 

a 

3.4 
2.5 
2.8 
2.3 
2.4 
2.9 

2.3 
2.3 
2.2 
3.2 

(2.2 — 
3.4) 

k* 

0.0030 
0.0055 
0.024 
0.027 
0.0016 
0.0086 

0.011 
0.014 
0.017 
0.0038 

(0.00007 — (0.002 — 
0.001) 0.03) 

* All properties are at room temperature and pressure, values from reference 
[6]-

various combinations of cylinder and medium materials are given in 
Table 1. It can be shown that for typical values of k * of 0.01 -» 0.001, 
the transient Biot modulus drops below 0.1 very quickly, substantially 
before the Raj reaches 1100. The clear implication is that the infinite 
k i solutions are satisfactory at the time of stability delay. In the ex
treme and unlikely case where the conductivity of the medium exceeds 
that of the cylinder (k* > 1.0), there would be a significant tempera
ture drop across the cylinder with respect to that in the medium. 
However, the effect on the calculation of delay time is still minimal. 
This can be visualized by comparing two calculations, one a lumped 
analysis with no temperature variation across the cylinder, and the 
other the actual case. At the same instant of time the actual or finite 
k i case will have a lower wall temperature but the penetration of the 
normalized (T/Tw) temperature field will be deeper into the sur
rounding fluid. Since the calculation of Ra^ is proportional to (Tw — 
T„)<53, the two effects tend to be self canceling. 

It is of interest to consider the relationship of this work with the 
solutions of the boundary layer equations for natural convection 
problems in the literature. Analytical solutions for the vertical flat 
plate problem with both a step change in wall temperature and a step 
change in heat flux are available. In these cases the end of the con
duction regime is related to the arrival of the leading edge effect. The 
form of this effect is a traveling singularity instigated by the impulsive 
boundary condition. The question arises, then, whether some analo
gous effect would be at work for the horizontal cylinder, since the 
stream wise boundary layer equations describing the situation are the 
same with the exception of a variable body force term. Experimental 
runs were attempted at high Grashof number to shed light on this 
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question as the boundary layer assumptions are generally considered 
valid for Gr > 104. This Grashof number is based on the assumption 
of an instantaneously applied wall temperature (or a constant wall 
heat flux, Gr*). In the experimental case, of course, the Gr number 
is a function of time, the wall temperature (or wall heat flux) is delayed 
at least a small amount by the heat capacity of the cylinder. It was 
observed that at values of input heat rate sufficient for the steady state 
Gr number to be greater than 104, stability delay tripped the flow to 
convection substantially before this value was reached, i.e., when the 
boundary layer equations were inapplicable. In the physical case this 
experience would appear to be valid, the stability hypothesis being 
a more appropriate simplification of the real flow situation at very 
short times than the boundary layer approximations. 

Conclusions 
1 The thermal stability theory for the onset of convection about 

a suddenly heated horizontal cylinder has been extended to include 
the cases of finite diameter cylinders with general heat transfer 
properties. 

2 It has been shown that the heat capacity ratio of the cylinder 
and surrounding fluid has a dominant effect on the solution for the 
delay time while the thermal conductivity exerts only a negligible 
influence. The diameter effect is accounted for in the nondi-
mensionalization of the heat rate and delay time. 

3 Experimental data have been generated which, along with 
previously obtained data, demonstrate the applicability of the ex
tended stability theory to predicting the onset of global convection 
under a wide range of conditions. 

4 Some local fluid motion, or washing of the cylinder sides, was 
detected. This motion might promote early deviation of the cylinder 
temperature response from pure conduction prediction, but was 
shown to be of insufficient magnitude to disrupt the stability mech
anism occurring in the fluid layer at the top of the cylinder. 
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An Analytical Study of Natural 
Conwectiwe Heat Transfer within a 
Trapezoidal Enclosure 
The natural convection motion and the heat transfer within a trapezoidal enclosure with 
parallel cylindrical top and bottom walls at different temperatures and plane adiabatic 
sidewalk are studied. Two-dimensional natural convective fields for a range of Rayleigh 
numbers, up to 2.7 X 106, and enclosure tilt angles, 0 to 180 deg measured from vertical, 
are investigated. The Galerkin's method of solution is applied to nonlinear form of the 
momentum and energy equations to determine the velocity and temperature fields. The 
average and local Nusselt numbers are also presented. 

Introduction 
Natural convection problems in enclosures have been of interest 

for many years. A review of the literature reveals an overwhelming 
number of references on natural convection. However, almost all the 
work completed thus far is restricted to relatively simple geometries 
such as rectangular enclosures or cylindrical annuli. 

The studies in the literature usually involve experimental and/or 
numerical techniques. Although the analytical methods based on 
spectral expansion techniques have been accepted as another powerful 
tool for thermoconvective flows, they have not been utilized to solve 
the fully nonlinear problem of natural convection in enclosures. Their 
application so far have been restricted to linear stability analysis of 
thermal flows, natural convection between parallel plates and infinite 
Prandtl number approximation. 

In the absence of sufficient information on natural convection in 
irregular geometries, the extensive literature available on rectangular 
enclosures is the basic mainstay for this investigation. Hart [1, 2] 
presents extensive analytical and experimental study of flow stability 
in an inclined rectangular box. He determines the regions of different 
flow regimes in Ra-Inclination Angle plane. Arnold, et al. [3-5] in
vestigate the effects of aspect ratio and inclination angle on the natural 
convection problem of a high Pr fluid in finite rectangular regions. 
Spradley and Churchill [6] present a numerical study of unsteady 
laminar thermal convection in compressible fluids at various reduced 
levels of gravity. Koutsoheras and Charters [7] show the effect of Ra, 
aspect ratio, and inclination angle on the heat transfer through an 
inclined air cell by the numerical solution of two-dimensional gov
erning equations. Pepper and Harris [8,9] obtain numerical solutions 
to two and three-dimensional natural convection in rectangular 
cavities by a strongly implicit procedure. Chan and Banerjee [10,11] 
develop a numerical technique based on a primitive form of conser
vation equations to investigate three-dimensional natural convection 
in rectangular enclosures. Ozoe, et al. [12-14] present experimental 
and numerical results on natural convection in long square and rec
tangular channels at various tilt angles. They consider large variations 
in Pr and aspect ratio. The experimental work by Ozoe, et al. [15] 
involving three-dimensional photography is very illustrative in 
showing the transition between the flow modes due to natural con
vection in an inclined rectangular box. Ozoe, et al. [16-18] give a 
three-dimensional finite-difference method to solve the same prob
lem. However, they limited their Ra range up to 8 X 103. Powe, et al. 
[19] present results of a finite-difference solution for natural con
vection within horizontal cylindrical annuli filled with air. An ex
tensive experimental and numerical investigation of natural con
vection within horizontal annuli between concentric and eccentric 
cylinders is investigated by Kuehn and Goldstein [20, 21]. 

This work presents an analytical study to investigate two-dimen

sional natural convection in the trapezoidal enclosure with adiabatic 
sidewalls shown in Fig. 1. If the enclosure is fluid-filled and a tem
perature difference is maintained between the bottom and the top 
surfaces as shown, a buoyancy-driven convective field will develop. 
This leads to natural convective heat transfer across the groove from 
the hot bottom to the cold top surface. The situation is complicated 
by tilting the groove through an angle from vertical. In the complete 
absence of previous information on trapezoidal enclosures, the ex
tensive data collected for rectangular enclosures can be used to make 
some qualitative predictions on the possible flow modes in trapezoidal 
enclosures. Such brief discussion, offered below, should be thought 
of as pure speculation from the results of rectangular geometry [1,2], 
and is not an outcome of this study. At very low Rayleigh numbers, 
the fluid will be nearly stagnant and the heat transfer is by pure 
conduction through the fluid layer from the hot plate to the cold plate. 
The temperature distribution in this case will be that of two-dimen
sional steady-state heat conduction in the enclosure. This simplest 
flow mode is called the conduction regime and is present at all tilt 
angles. When the Rayleigh number exceeds a critical value, which is 
different for each tilt angle, a steady two-dimensional unicellular 
convection sets within the enclosure. Such a motion occurs first at an 
inclination angle of 90 deg (vertical), and its initiation is retarded as 
the inclination angle is changed from 90 to 180 deg or from 90 to 0 deg. 
The magnitude of this flow increases from 0 to 90 deg and starts de
clining after 90 deg, and it almost vanishes at 180 deg. As the Rayleigh 
number is increased, this two-dimensional flow gets even stronger. 

TILT ANGLE = 9 0 - 0„ 
I 

T.> T, 

1 Presently with Shell Development Company, Houston, TX. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
October 9,1979. Fig. 1 Trapezoidal enclosure configuration 
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In this flow regime, the energy is mostly transported by the circular 
motion of the convection cell; therefore, it is called the convection 
regime. The upper limit of this flow regime largely depends on the tilt 
angle. From 90 to 180 deg, this flow regime is present for a good range 
of Rayleigh numbers; but as the tilt angle changes from 90 to 0 deg, 
a three-dimensional steady cellular motion in the form of longitudinal 
rolls starts appearing. The Rayleigh number required for initiation 
of such a flow is lowest at 0 tilt angle (horizontal positioh with the 
hotter plate at the bottom). In fact, at 0 tilt angle, the range of Ray
leigh number for the occurrence of the two-dimensional cellular mo
tion is so small that the direct change from the conduction regime to 
the three-dimensional cellular motion is possible. For a given Rayleigh 
number, the range of tilt angle around 0 deg in which the three-di
mensional cells occur becomes smaller as the Prandtl number in
creases. For Pr = 0.7 (air), this range may be expected to change from 
0 to 60-70 deg with the increasing Rayleigh number. In this tilt angle 
range, further increase in the Rayleigh number causes unsteadiness 
and finally transition to turbulence. For the rest of the tilt angles, the 
two-dimensional cellular motion is dominant for a large range of 
Rayleigh numbers. Around 90 deg at large Rayleigh numbers, mul
tiple, stationary transverse cells may be expected to set in for a short 
range of Rayleigh numbers before the initiation of transverse trav
elling waves. However, for tilt angles greater than 90 deg (up to 180 
deg) the two-dimensional cellular motion is expected to change to 
three-dimensional longitudinal rolls instead of two-dimensional 
transverse rolls [2]. Although it is not strictly relevant to the present 
problem, useful background can also be obtained from the literature 
on natural convection between two parallel plates, of which references 
[22] and [23] are representative of an extensive literature. 

For a range of Ra and tilt angles, using Galerkin's method of solu
tion, this paper presents the velocity and temperature fields in the 
trapezoidal enclosure of Fig. 1. Average and local Nusselt numbers 
were also calculated from the knowledge of velocity and temperature 
distributions. As related to the method of solution used here, Orszag 
[24,25] gave an introduction to Galerkin flow approximations and to 
methods to implement them efficiently. He then compares the 
Galerkin method with finite difference methods and concludes that 
cut-off Fourier expansion methods require considerably less computer 
time and memory than the finite difference methods for the same 
accuracy. Catton, et al. [26] obtained a solution to the steady two-
dimensional natural convective flow problem in an inclined rectan
gular slot by the Galerkin method. They studied 60 to 135 deg range 
of tilt angles and they used the infinite Pr number approximation 
which simplified the momentum equation by neglecting the non
linear convective terms. Denny and Clever [27] compared the Galerkin 
and finite difference methods for solving highly non-linear thermal 
problems. They pointed out that in the Galerkin method, the wall 
gradients are as accurate as the internal field results in contrast to 

finite difference methods. Shaughnessy, et al. [28] explained the use 
of spectral expansions for solving nonlinear partial differential 
equations. 

The present work has moderate Pr number, therefore, neither zero 
Pr nor infinite Pr simplifications are made and the Galerkin method 
is applied to nonlinear form of the momentum and energy equation. 
The results are presented up to 2.7 X 106 Ra number for the cylindrical 
trapezoidal enclosure of Fig. 1, tilt angles ranging from 0 to 180 
deg. 

A n a l y s i s 
The configuration for the analytical model is shown in Fig. 1. The 

cross-sectional view of the model is a trapezoid of altitude D, with 
parallel cylindrical sides which are kept at constant temperatures T\ 
and T2 (T2 > T{). The nonparallel sidewalls are considered to be 
adiabatic. The centerline of the trapezoid makes an angle of 0o with 
the horizontal, and the length of the enclosure in the direction per
pendicular to this trapezoid is long enough to eliminate any depth 
effects. The angle between the centerline of the trapezoid and the 
vertical is called the tilt angle. 

Assuming the thermal and fluid properties to be constant, and 
neglecting the viscous dissipation, under steady-state conditions the 
mass, momentum, and energy balance equations with Boussinesq 
approximation [29] describing the natural convective flow in this 
enclosure can easily be obtained. The nondimensionalized form of 
these equations takes the following form. 

V - V = 0 (la) 

(V • V)V = - V P + V2V + Gr • T(e r sin 6 + e„ cos 0) (lb) 

(V-V)T = — V 2 T 
Pr 

(lc) 

where V = erur + eeu$ is the velocity vector, and the operators V and 
V2 are defined as 

d 1 d 

dr r do rdr\ dr r2 d62 (2) 

Introducing the stream function, \p, so that the continuity equation 
(la) is identically satisfied, and upon taking the curl of equation (16) 
and combining the resulting equation with the definition of stream 
function, the pressure terms in equation (16) can be eliminated as 

(V • V)(V2i^) = W + Gr I — cos 0 - - ^ sin 0| (3) i a r 
\dr " " r d0 

where V4 = V2(V2) is the biharmonic operator, and \p is defined as ur 

= - 1 / r d^/d0 and u8 = di^/dr. 
The boundary conditions of the problem described above take the 

following form 

• .Nomenc la ture -
On', anm = expansion coefficients 
A.% = area of inner cylindrical surface of 

trapezoid 
bn', bnm, dm' = expansion coefficients 
D = altitude of trapezoid 
em' = expansion coefficients 
er, e« = unit vector in r and 0-directions 
g = gravitational acceleration 
Gr = Grashof number, gyATD3/i>2 

k = thermal conductivity 
lmn = expansion coefficients 
Nu = Nusselt number, QD/(A2kAT) 
Nu = Nusselt number for base flow 
Nuy = Nus, local nusselt number trans

formed into x-y plane 
Nuo = local Nusselt number, qoD/(kAT) 
P = dimensionless pressure, (P — Po)/[p(v/ 

D)2} 
Po = hydrostatic pressure 
Pr = Prandtl number, via 

qe = heat flux per unit area from hot, inner 
cylindrical surface 

Q = rate of heat flow 
r = dimensionless distance in r-direction, 

r/D 
r\ = dimensionless radius of outer cylindrical 

surface, ro/D 
T2 = dimensionless radius of inner cylindrical 

surface, (r0 + D)/D 
Ra = Rayleigh number, (Pr) (Gr) 
T = dimensionless temperature, (T - T0)/ 

( T a - T i ) 
To = (Ti + T2)/2 
T\ = temperature of cold, upper cylindrical 

surface 
Ti = temperature of hot, bottom cylindrical 

surface 
T = dimensionless base flow temperature 
t = an arbitrary independent variable 

ur, ue = dimensionless velocities in r and 
0-directions, ul(vlD)2 

V — dimensionless velocity vector, V/(»/ 
D)2 

a = thermal diffusivity 
(3 = angle between sidewalls of trapezoid 
7 = thermal coefficient of volume expan

sion 
0 = angular coordinate measured from hori

zontal in counter-clockwise direction 
0o = angle between trapezoidal centerline and 

horizontal 

0i = 0o - (3/2 
02 = 0 O + m 
v = kinematic viscosity 
p = density 
\p = stream function 
\p = stream function of base flow 
i/'n, ipn*, <P, £ = eigenfunctions 
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di di// 
— = — = 0 at r = r\, r2 and/or 0 = 01( 82 
dr dd 

T = Ti at r = n, T = T2 at r = r2 

d T 
— = 0 at 0 = 0i, 02 
d0 

(4a) 

(46) 

(4c) 

Due to the nature of the cylindrical coordinate system the above 
governing equations are complicated to solve. Therefore, the following 
coordinate transformation as shown in Fig. 2 is utilized. 

q = Inr, (5) 

Next, in order to change the intervals of both independent variables 
q and s to (—V2, V2), the coordinates q and s are transformed to x and 
y by the following linear transformation. 

1 s — si 1 • 9 i 
y = - (6) 

< ? 2 - < 7 i £ S 2 - S 1 

where q\ = Inri, qi = \nr2, s\ = 0i, and s2 = 02-
The governing equations in the x-y plane are obtained by the 

substitution of the transformation relations (5) and (6) into the 
equations (lc) and (3) as 

di 
yo 

dy H^)h2S+y°2S^ 
diM d 

+ *o —too—- |*o ' dx [ dy 

d 2 d 2 

2—+ y°2
dj^ 

/ d2 d2 

+ Gr(rir2)3/2e<3*/j:0> 

dx2 

d 

dT 
y o — • s i n 

i>y 
in - + 0O 

\yo 1 

Idi dT d\p 
*oyo — — - — 

\dx dy dy 
3=^H 

?>T (y „ 
• XQ COS 1- 00 

dx \y0 

d2 d2 V 

dx2 dy2/ 

(7a) 

(76) 

where xo = lAn (r2/ri) and yo = 1//8, and /3 is the groove angle. 
Similarly, the transformation of the boundary conditions (4) yields 

the following conditions in the x-y plane. 

, df di 
i = — = — = 0 at x = ±V2 or y = ±V2 

dx dy 

V2 at x = - % , T = -V2 at x = V2 

— = 0aty = ±V2 

(8a) 

(86) 

(8c) 
dy 

Conduction Regime. Before attempting to solve the above gov
erning equations a special case will be considered. For the small values 
of Gr, the convective terms will be neglected. This resulting flow is 
usually termed the 6ase flow, which is the simplest possible flow, and 
the heat is transferred only by molecular conduction. The variables 
of this regime are indicated by overbars. The solution of the energy 
equation without the nonlinear convective terms simply becomes 

T = - x 

and the momentum equation reduces to 

(9) 

d4 

x 0
4 -—+2x 0

2 y 0
2 

d4 d4 

dx4 + Vo4 

dx 2 dy 2 dy 4 

+ 4 1 ; + yo2 _d£ 
dy'' 

WGr) 

= e(3*/*o)(KlCos — -K2sin~) (10a) 
\ yo yo/ 

with 

i = — = — = 0atx 
dx dy 

±1/2 or y = ±V2 (106) 

s2=e2 

s,=e, 

ds dy I 

-aT2 = 0.5 

-0.5 

0.5 

T.—0.5*. 

d* di 

j 1-0.5 

0.5 
-B- X 

v / n r , q,= *nr, 

Fig. 2 Coordinate transformation 

where K\ = xQ(rir2)
a/2 cos 0O, K2 = x0(r ir2)3 / 2 sin 0O, and i is the 

stream function under base flow conditions. 
Equation (106) suggests that _the ratio of the base flow stream 

function to the Grashof number, i/VGr, (and, thus, u r /Gr and u«/Gr) 
is independent of Gr, provided, of course, that Gr is small enough for 
a base flow to exist. Equation (10a) cannot be solved by the method 
of separation of variables since it contains terms with cross differen
tiation. However, Galerkin's Method can be successfully applied to 
obtain the solution for i . The base flow stream function can be ex
pressed in a series expansion form as 

_ M N _ _ 

i(x,y)= £ E Inmin(x)-im*(y) 
m«=l 71=1 

(11) 

where in and im* are two complete orthogonal sets of functions in 
the intervals — x/2 < x < % and —xk<y< V2, respectively, and 1 

nm are 
the expansion coefficients to be determined. 

Functions i n and im * should be chosen such that they will satisfy 
the proper boundary conditions fori/', equation (106), in x and y di
rections, respectively. Therefore, the C and S functions [30, 31] are 
used as, 

ii(t) = ii*(t) ( Ci(t), for event 

Si(t), for odd i 

where i can be n or m, and t can be x or y, and 

cosh (A;t) cos (X;t) 

(12a) 

Ci(t) • 
cosh (X;/2) cos (X;/2) 

Si(t) = 
sinh(^ijt) sin(n;C) 

(126) 
sinh (fii/2) sin (M;/2) 

in which X,- and fit (i = 1, 2, 3 , . . . ) are the positive roots of the equa
tions tanh (Xj/2) + tan (X,/2) = 0 and tanh (ml2) - tan (w/2) = 0, 
respectively. 

After the substitution of the expansion (11) into equation (10a), 
the resulting equation is multiplied byii(x)ij(y) and then it is dou-
bled-integrated in the full domain of x and y to obtain N X M alge
braic equations for the N X.M unknowns. From these equations the 
expansion coefficients, \nm and therefore the stream function are 
determined. 

Once the base flow stream function is known, the velocity compo
nents can be calculated by 

Ur ' 

Ug 

ldi_ 

r dd' 

_ d£ 
~ dr ' 

_ldi 

r ds 

1 ^ ( r i r 2 ) - 1 / 2 

r dq 

- ( r i r 2 ) - 1 / 2 e ( -^o» — 

e(-x/xo) 
in(r2/ri) dx 

(13a) 

(136) 
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Convection Regime. Obviously, in the convection regime, the 
temperature field cannot be determined without the knowledge of 
the velocity distribution in the enclosure. Therefore the governing 
equations must be solved simultaneously. 

The temperature profile in the convective regime can be expressed 
as the sum of a conductive part and a convective part, as 

T(x, y) = T(x) + Tc(x, y) = -x + Tc(x, y) (14) 

so that the substitution of equation (14) into equations (76) and (8) 
removes the non-homogeneity on the temperature boundary condi
tions and adds a nonhomogeneous term to the homogeneous energy 
equation. Next, equation (14) is substituted into equation (7a) in 
order to change the variable T to Tc. Now, all the boundary conditions 
are homogeneous, Galerkin's method of solution can be applied by 
the following expansions for xp and Tc, 

M N 
\p(x,y)= £ £ anmipn(x)-\}/m(y), 

m = l n = l 

M N 

Tc(x,y)=Z £ bnm<t>n(x) • U(y) (15) 
m = l n = l 

where 

Wt) 
Ci(t) for even i, 

Si(t)foioddi, 

(t) = sin \iir{t + V2)|, i = 1, 2, 3 . . . , 

cos {(i - l)ir(t + V2)l, i = 1, 2, 3 . 

and functions C; and S; are given by equations (12b). Finally, the 
expansion forms of ux and uy can be obtained in the following 
form. 

ux(x, y) •• 
dy 

M N 

^n(x)i/m'(y), 

M N d\j/ 
uy{x,y)= — = £ £ anm\pn'(x)\pm(y) (16) 

OX m=l n=l 

Then the radial and angular velocity component, ur and UQ can be 
determined from equation (13) as 

(n/r2)
x _ (nlr2)* 

ue> ( n r a ) ^ In ( r 2 /n) 
(17) 

(nr2)W 

where prime denotes the differentiation with respect to argument. 
Evaluation of the Nusselt Number . Defining the Nusselt 

number, Nu, of the enclosure based on the altitude, D, the total heat 
transfer rate, Q, from the hot bottom of the enclosure, and the surface 
area of the bottom surface, A2, gives Nu = QD/(kA2AT) which can 
be shown to be equal to 

Nu - I Cl 

~8Jei drjn 
(18a) 

After substitution of the coordinate transformation, in the con
duction regime, T = T(x) = —x; the base flow normalized Nusselt 
number Nu, can be evaluated as, 

1 
N u : (18b) 

n In (rjj/ri) 

Next, we will define a local Nusselt number on the bottom of the grove 

Nu 
'kAT 

(19a) 

where qe = -k LT/D(oT/or)n. Therefore, the local Nusselt Number 
transformed into the x-y coordinate system in terms of the temper
ature gradient becomes 

J im Nue = Nuy = - • (19b) 
ri In (r2/ri) \dx/x=-i/2 

where (&T/dx)x=-\/2 can be obtained from equations (14) and (156) 

dT\ M N 
— ,. = - 1 + * E E nbnm^(y) (19c) 
OXlx = -l/2 »=U=! 

Finally, the relationship of the Nusselt number with the local Nusselt 
number can easily be demonstrated as 

Nu •X 
+ 1/2 

1/2 
Nuydy (20) 

R e s u l t s a n d D i s c u s s i o n s 
For a given enclosure configuration, using Galerkin's method, the 

solutions in conduction regime can readily be obtained. For convection 
regime Galerkin's method results in the expansion coefficients of the 
stream function, \p and of the temperature, T. The nonlinear set of 
algebraic equations in terms of these coefficients are numerically 
solved in an iterative fashion. The base flow stream function results 
of conduction regime are used as the initial guess values to calculate 
the velocities ux and uy of the convective regime. The iterative pro
cedure is continued until the expansion coefficients converge. Using 
this value of the stream function, the temperature field is computed 
and the iterative procedure is continued until convergence of both 
the expansion coefficients of the stream function and the temperature 
field are obtained. Once the expansion coefficients are determined, 
the stream functions, the temperature distributions, the velocity 
components, the local Nusselt number distributions and the average 
Nusselt numbers are evaluated. The following numerical values were 
used in the computations; r0 = 1.866, D = 3, /3 = 30 deg, Pr = 0.71 
(air). 

Before presenting the flow patterns and temperature profiles in 
the trapezoidal enclosure, the coordinate positions on this enclosure 
are given in Fig. 3 for convenience. This figure can be used in con
junction with the rest of the figures given in this chapter to enhance 
clarification. 

I / *> r* 

/ 
In lr / r . ) |. 

B-e0+$/z i 
0 

Fig. 3 Cylindrical and x-y coordinates shown simultaneously on (he trape
zoid 
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TILT ANGLE =90° 

I03 104 10s I06 

RAYLEIGH NUMBER, Ra 

Fig. 4 Variation of Nusselt number with Rayleigh number at different tilt 
angles 

The average Nusselt numbers calculated at different tilt angles for 
various Rayleigh number are given in two different forms in Figs. 4 
and 5. Figure 3 is probably more illustrative in showing the region in 
which the analytical model is applicable. At a tilt angle of 180 deg, the 
hot plate is on top. Therefore, no convection is developed. As the tilt 
angle is decreased towards 90 deg, the two-dimensional natural con
vection composed of a single cell is initiated at a Rayleigh number 
above 103. This single cell convection is strongest in a region around 
a tilt angle of 90 deg, so that the Nusselt number shows a maximum 
value in this region. As the tilt angle further decreases towards 0 deg, 
this two-dimensional convection gets weaker and the Nusselt number 
shows a decline in this region. In a region between 0 to 90 deg, con-
vective flow is expected to become three-dimensional. The experi
mental data available in literature on rectangular geometry shows that 
the value of the Nusselt number decreases as the tilt angle is decreased 
from 90 deg. At an angle between 0 and 90 deg, the Nusselt number 
goes through a minimum value and starts increasing as the tilt angle 
further decreases towards 0 deg. This phenomenon is known to be due 
to the change in the direction of convection cells. The two-dimensional 
transfer cells occurring at 90 deg tilt angle become oblique at the tilt 
angle where the Nusselt number shows a minimum and then become 
three-dimensional, longitudinal rolls at 0 deg tilt angle. The experi
mental results on trapezoidal geometries [32] show similar charac
teristics on Nu versus tilt angle curves. Therefore, in a region between 
0 and 90 deg, convective flow is expected to become three-dimensional. 
At high Rayleigh numbers close to 0 deg tilt angle, iterations of the 
computer program did not converge to a solution. This is expected 
since the flow in this region is probably three-dimensional. In the 
region lying between the two-dimensional and three-dimensional flow 
regions, the two-dimensional solution may not be applicable because 
of the possible coexistence of the three-dimensional rolls which could 
not be simulated by the two-dimensional model. This region is ex
cluded by a dashed line in Fig. 5. The position of this dashed line is 
not exact since the change from two to three dimensional motions is 
expected to be a gradual one. The convergence of the computer pro
gram at Rayleigh numbers above 105 slowed down, probably indi
cating a transition to another flow mode, since three-dimensional 
unsteady flow regimes are observed at high Ra in rectangular 
geometries. 

Stream functions at various tilt angles and Rayleigh numbers are 
presented in Figs. 6 and 7. First, the stream patterns at the various 
Rayleigh numbers at an inclination of 90 deg are given to show the 

I I i i I i i I i i I i i I i i I i i 
180 150 120 90 60 30 0 

TILT ANGLES, DEGREES 

Fig. 5 Variation of Nusselt number with tilt angle at different Rayleigh 
numbers 

effect of Rayleigh number on flow. Then the stream patterns are given 
at various tilt angles to show the effect of inclination angle on flow. 

The examination of the stream function in Figs. 6 and 7 shows the 
single-cellular nature of the two-dimensional flow existing in the Ra 
range considered. The value of the stream function increases towards 
the central portion of the slot and reaches a maximum there. At 90 
deg tilt angle, this maximum value of the stream function changes 
from 1.7 at Ra = 4.9 X 103 to more than 12.0 at Ra = 2.71 X 105, in
dicating an almost ten-fold increase in the magnitude of the velocity 
component, ur changes from about 7 to 65 while the maximum value 
of the angular velocity component, ue shows a drastic change from less 
than 5 to over 100 as Ra increases from 4.94 X 103 to 2.71 X 10B. 
Therefore, the profound effect of Ra on the convective motion is ev
ident. At Ra above 106, the waviness in the stream patterns increases 
and initiation of a multicellular structure in the middle portion of the 
slot is observed. The convergence of the computer program slowed 
in that region. It is suspected that the growth of this multicellular 
pattern may lead to either a three-dimensional or a time-dependent 
flow structure. 

The examination of the flow patterns as a function of tilt angle in 
Fig. 7 shows that the geometrical shape of the cellular flow is almost 
symmetrical with respect to the centerline of the groove for 90 deg tilt 
angle. For tilt angles below and above that value, the cellular pattern 
gets tilted from the centerline of the slot. It is also observed that the 
strength of the convective flow falls sharply as the tilt angle changes 
from 90 to 180 deg. This is indicated by the sharp drop in the maxi
mum value of the stream function. 

Figures 8 and 9 show the effect of tilt angle and RA on temperature 
distribution in the slot. The sharp increase in the temperature gra
dients with increasing Ra at the tilt angle of 90 deg is observed. At Ra 
= 4.9 X 103, only small variations from the base flow temperature 
distribution are observed. However, temperature gradients close to 
the hot and cold plates get sharper as Ra increases, and at Ra = 2.17 
X 106 almost all temperature variations seem to be confined in narrow 
regions adjacent to the hot and cold plates with almost no temperature 
variations in between. This suggests the existence of relatively narrow 
thermal boundary layers on the hot and cold plates. 

In Fig. 10 the horizontal lines represent the corresponding average 
Nusselt number for each local Nusselt number distribution curve. In 
each case, the local Nusselt number changes from a minimum at one 
sidewall to a maximum towards the other sidewall along the hot plate. 
The difference between those minimum and maximum values is large. 
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Stream functions for various tilt angles for Pr = 0.71 and Ra = 7.13 

For example, at Ra = 7.13 X 104 and tilt angle = 90 deg, the local 
Nusselt number changes from a minimum of 2 to a maximum of 7.5, 
with an average value of approximately 5.5. 

In all computations presented in this work, the value of the index 
N used was 10, which corresponds to 100 terms in each of the expan
sions given in equations (15). The Nusselt numbers at Ra > 105 in
dicated a difference of 1-3 percent as compared with the Nusselt 
numbers used with N = 12 (which increases the number of terms to 
144 in each expansion). For smaller RA numbers, Ra < 106, this dif
ference decreases down to zero at Ra s 104. In obtaining the results, 
the solution did not oscillate as N became large. 

Concluding Remarks 
The spectrum of flow modes due to natural convection in an en

closure may change from a state of no motion to the complicated 
turbulent flow. Flow instabilities lead to numerous other flow modes 
between these two extreme cases. The initiation, development and 
disappearance of each flow mode is largely affected by the variation 

Fig. 9 Isotherms for various tilt angles for Pr = 0.71 and Ra = 7.13 X 104 

of a large number of parameters, e.g., the geometry of the enclosure, 
the type of fluid in the enclosure, boundary conditions, the Rayleigh 
number, and inclination with respect to gravity. Due to the experi
mental and mathematical difficulties combined with the possibilities 
of large variations in various flow parameters and the flow modes, it 
is impossible to make a general analysis to cover the whole spectrum 
of flow modes in an enclosure with an arbitrary shape. Therefore, one 
must restrict oneself to a certain enclosure shape and to a certain range 
of flow parameters to be able to reduce the governing equations into 
a tractable form. In this work one such model is demonstrated. In spite 
of the relative simplicity of this model compared to real flow, the 
equations are still too complicated to be solved exactly. Therefore, 
approximate solution techniques must be applied in order to obtain 
any solution. The most commonly available approximate solution 
techniques are analytical methods using spectral expansions and 
various numerical techniques. In the solution of thermal convection 
problems, the numerical finite difference method is much more widely 
used than the Galerkin method, which is one of the most commonly 
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Fig. 10 Variation of local Nusselt number distribution with Rayleigh number 
(at tilt angle 90 deg) and with tilt angle (at Ra = 7.13 X 10") (Horizontal lines 
indicate the average value of the Nusselt number at the corresponding till angle 
and Rayleigh number.) 

known spectral expansion methods. However, the limited literature 
on the comparison of these two methods indicates that neither of the 
methods is superior to the other one [24,25,27,28]. The comparison 
of the Galerkin and the finite difference methods for the solution of 
highly nonlinear thermally-driven flows by Denny and Clever [27] 
indicates that "with increasing precision in the wall heat flux and/or 
shear, the computational costs for both methods become comparable; 
however, for errors in excess of 2-3 percent, the Galerkin method is 
more economical." The disadvantage of the Galerkin method seems 
to be the laborious preparation of the algebraic problem. However, 
the Galerkin method may be better suited for the determination of 
relatively sharp velocity and temperature gradients near the 
boundaries. 

The two-dimensional analytical model used in this work was ca
pable of handling the first two flow regimes occuring in the enclosure. 
Up to Rayleigh number of 103, a conduction-dominated regime pre
vails, and afterwards a two-dimensional unicellular convective regime 
takes place. This regime is dominant up to Rayleigh numbers more 
than 10B for tilt angles of 90 deg or greater. For lower tilt angles, 
however, the top limit of Rayleigh number where this regime is valid 
decreases towards 0 deg tilt angle and expected to be around 104 for 
0 deg tilt angle. Above this limit three-dimensional effects are ex
pected to be dominant. 

The geometry considered in this work is a very close approximation 
to the geometry involved in the moderately concentrating trapezoidal 
solar collectors. The experimental results related to the natural con
vection heat transfer in the trapezoidal solar collectors are given in 
references [32] and [33]. The comparison of those experimental results 
with the results of the present investigation showed reasonable 
agreement [33]. 
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An Experimental Study of Natural 
Confection in Trapezoidal 
Enclosures 
Experimental data for natural convection of air in an inclined trapezoidal enclosure are 
reported for a Rayleigh number range of ~2 X 103 to ~ 5 X 101. The small side of the trap
ezoid was electrically heated while the opposing large side was cooled to a uniform tem
perature. The effect of tilt angle from 0 to 90 deg {from horizontal) was investigated at 
15 deg increments. Data were also obtained for 180 deg (hot surface facing down). A com
parison of the data to an analysis using a two-dimensional circulation pattern showed 
reasonable agreement in the Rayleigh number-tilt angle range where two-dimensional 
circulation could be expected. The experimental data are correlated by an equation of the 
form, Nu = C Ran, over a wide Rayleigh number range. The data exhibit a local minimum 
in the Nusselt number-tilt angle curve between 90 and 0 deg in a manner similar to that 
observed in inclined rectangular channels. 

Introduction 
Natural convection in inclined enclosures has received increased 

attention in recent years. A large number of papers on natural con
vection have been published, but little work has been devoted to 
unorthodox geometries which can arise in practical applications. 

This paper describes a study of natural convection in trapezoidal 
enclosures; if the enclosure is fluid-filled and a temperature difference 
is maintained between the surfaces, a buoyancy-driven convective 
field will develop. This leads to natural convection heat transfer across 
the enclosure from the hot to the cold surface. The situation is further 
complicated by tilting the enclosure through an angle from the hori
zontal. 

An important application on the trapezoidal groove geometry is to 
the so-called moderately concentrating solar collector. In this appli
cation, the trapezoidal geometry results when the absorbing surface 
and sidewalls are enclosed by the addition of a cover plate. The cover 
plate, which is at a lower temperature than the absorber, is used to 
suppress convection and radiation heat losses. The sidewalls are re
flective surfaces and could contribute to the overall convective field 
in the groove. 

Experiments were performed using an apparatus containing four 
trapezoidal grooves (see Fig. 1). Each groove consisted of an electri
cally-heated aluminum surface at the bottom, a water-cooled copper 
plate at the top, and two enclosing sidewalls. Two sidewall conditions 
were considered: aluminum sidewalls (with the capability of sidewall 
heating) to simulate high heat loss sidewalls, and balsa wood sidewalls 
with no heating to simulate low heat loss sidewalls. 

A Rayleigh number range from ~2 X 103 to ~ 5 X 107 was provided 
by changing the pressure inside a pressure chamber from 0.068 to 10.2 
atmospheres. Air was used for all experiments. Experiments were 
carried out at various tilt angles from 0 deg (horizontal) to 90 deg 
(vertical). A tilt angle of 180 deg (heated surface facing down) was also 
tested since this position is the most stable configuration, approxi
mating a pure conduction case. 

The measurements of temperature and of energy supplied to the 
groove were used to calculate the Nusselt number as a function of the 
Rayleigh number at different tilt angles for each sidewall condi
tion. 

A companion analysis of the heat transfer in a trapezoidal enclosure 
with adiabatic sidewalls was performed and is reported in detail in 
references [1, 2]. The model was based on a two-dimensional circu
lation pattern. Consequently, it is not applicable to the complete 
Nu-Ra-tilt angle range covered by our experiments. However, com

parisons of the experiments with the analysis in regimes where the 
two-dimensional flow model is applicable are made. 

Literature Review 
A review of the literature reveals an overwhelming number of ref

erences. However, almost all the work completed thus far is restricted 
to relatively simple geometries such as rectangular or cylindrical en
closures. The literature for rectangular enclosures provides a body 
of data that relates closest to the trapezoidal geometry investigated 
in this study. To a lesser degree, the body of work available on natural 
convection in cylindrical annuli provides some insight. 

An experimental investigation of convective heat transfer in liquids 
between two parallel plates at various inclination angles was described 
by Dropkin and Somerscales [3]. They covered a Ra range of 5 X 104 

to 7 X 108 and a Pr range of 0.02 to 11,560. Their results were put into 
a power law form relating the variables Ra, Pr, and Nu. A constant 
of proportionality at different tilt angles was evaluated. 

Hollands, et al. [4] measured heat transfer through inclined air 
layers of high aspect ratio, heated from below. They covered Ra up 
to 106 and inclination angles from 0 to 70 deg measured from hori
zontal. 

Arnold, et al. [5,6] measured heat transfer in a rectangular region 
with aspect ratios from 1 to 12. Ra up to 106 were covered. The vari
ation of Nu with tilt angle showed a local minimum Nu between 70 
and 30 deg. Nu is maximum at 0 deg tilt angle. By their explanation, 
the minimum is caused by a transition between a unicellular two-
dimensional circulation near 90 deg to Benard-type instabilities near 
0 deg tilt angle. Hart [7, 8] performed extensive analytical and ex
perimental studies of flow regimes in an inclined box with basically 
the same conclusions as reported by Arnold. 
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Fig. 1 Cross-section of experimental apparatus 
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Ozoe, et al. [9-15] report extensive experimental and numerical 
work related to rectangular geometries. In [9] they report a minimum 
in the Nu between 0 and 90 deg for low aspect ratios. The minimum 
is attributed to a change in the nature of the circulation pattern. In 
[10], they state that the preferred mode of convection in a square box 
at 90 deg tilt is a single two-dimensional roll with its axis along the long 
dimension. Three-dimensional photographs reported in [13] actually 
showed the transition between the flow modes as the tilt angle 
changes. 

Natural convective motion and heat transfer have also been studied 
using visualization techniques. Brooks and Probert [16], Presner and 
Hsu [17], and Farhadieh and Tankin [18] studied high aspect ratio 
horizontal layers. Meyer, et al. [19] and Randall, et al. [20, 21] used 
interferometry to study convection across air in tilted enclosures. 
Grashof numbers up to 3 X 106 were achieved. Kuehn and Goldstein 
[22,23] used Mach-Zehnder interferometry to determine temperature 
distributions and local heat transfer coefficients in cylindrical annuli. 
They used air and water. They found that eccentricity of the inner 
cylinder substantially alters the local and average heat transfer. 

Flack, et al. [24, 25] have measured heat transfer in triangular en
closures. The enclosure consisted of a heated surface facing down at 
45 deg adjacent to a cooled surface facing down at 45 deg; the enclosure 
was completed by a horizontal adiabatic surface connecting the two 
slanted walls. No tilting was performed. This situation is not amenable 
for comparison to our trapezoid data. 

The papers cited in this section represent the types of observations 
which have been made in enclosed geometries. A much more extensive 
discussion of the literature is given by Iyican [1]. 

E x p e r i m e n t a l A p p a r a t u s 
A cross-section of the apparatus is shown in Fig. 1. There are four 

trapezoidal grooves, each 61-cm long and enclosed by a 0.238-cm thick 
copper plate on top, a 0.051-cm thick aluminum plate at the bottom 
and two slanted sidewalls. The sidewalls were made of aluminum in 
one set of experiments and were replaced by balsa wood sidewalls for 
the second set of experiments. Figure 2 shows the details of the en
closures for the aluminum sidewalls. 

The cover plate was kept at a uniform temperature by water flowing 
through a 1.27-cm o.d. copper tubing soldered to it. The heated surface 
was 1.91-cm wide and was insulated from the sidewalls with 0.318-cm 
wide fir wood strip at each side. The heated surfaces were heated in
dividually by means of electrical heating tapes. These tapes were 
1.27-cm wide and 61-cm long and were glued to the surfaces by a 
thermally-conductive, electrically-insulative glue. 

Each heated plate and its heating element were glued into a groove 
cut into a long fir wood strip (see Fig. 2 for dimensions). The alumi
num sidewalls were glued to each other at the top with silicone rubber 
and were fastened at the bottom to the wood strip. 

The space between the two aluminum sidewalls and the fir wood 
strip connecting them was filled with a styrofoam piece shaped like 
a triangular prism. A styrofoam strip was glued with silicone rubber 
to the top of the sidewalls along the axial direction in order to separate 
the cover plate from the sidewalls and to prevent air leakage from one 
groove to the other. In the case of the wood sidewalls a triangular-
shaped balsa wood piece was tightly fitted into the space between 
wood strips holding the absorber plate. The trapezoidal grooves were 
closed at both ends by 0.318-cm thick styrofoam inserts. 

The apparatus was covered completely with 5.08-cm thick styro
foam blocks. The styrofoam at the sides was rounded to make the 
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Fig. 2 Details of the trapezoidal enclosure with aluminum sidewalls 

outside of the insulated apparatus fit easily into the pressure 
chamber. 

An electrical system was designed to supply power to each heated 
plate and each sidewall individually. This system consisted of a d-c 
power supply, a transistor control unit, a voltmeter, and an am
meter. 

The pressure chamber assembly was a 1.524-m long, 45.7-cm o.d. 
steel pipe closed at one end by an endcap. At the other end a slip-on 
flange was welded to the pipe. An O-ring fitted into a groove cut in 
the outer face of the slip-on flange provided a pressure seal. 

Components in the chamber held the apparatus in a fixed position 
and were used to mount the panels for the heating tape and thermo
couple connectors. An air cylinder with 2000 psi air was connected to 
the vessel and provided the desired pressure. A vacuum pump was 
used to achieve pressures less than atmospheric. 

The heated aluminum base strip does not extend fully across the 
base of the trapezoid. Chu, et al. [26] studied the effect of heater size 
and location on the heat transfer and circulation patterns in a long 
rectangular enclosure. In their study, the heater was placed on an 
insulated vertical wall and the opposite wall was cooled. The hori
zontal surfaces were either isothermal or adiabatic. For a square 
channel with a centrally-located heater the circulation is not increased 
significantly if the heater size is greater than 20 percent of the wall 
height. The heated surface in the trapezoid is centrally-located and 
covers 75 percent of the surface. Consequently no significant effect 
of heater size or location should be present. 

. N o m e n c l a t u r e . 

A = heat transfer area 
B = trapezoid base width 
C = coefficient in equation Nu = C Ra-375 

cp = specific heat of air 
D = height of trapezoidal groove 
g = gravity acceleration 
Gr = Grashof number 
k = thermal conductivity of air 

Nu = Nusselt number 
Pr = Prandtl number 
q = rate of heat transfer 
Ra = Rayleigh number 
Rac = critical Rayleigh number 
T\ = temperature of the cooled plate 
T2 = temperature of the heated surface 
|S = trapezoid angle 

p = density of air 
ix = viscosity of air 
7 = coefficient of thermal expansion, 1/T 
<t> = tilt angle, measured from horizontal 

Subscripts 

t = total 
c = conduction 
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Scope of Experiments 
Experiments were performed by supplying a fixed amount of energy 

to the heating tapes and measuring the temperatures in the trape
zoidal grooves for fixed values of the pressure and tilt angle. The two 
outer grooves were used as guard heaters, thus minimizing side effects. 
To insure that results were not influenced by end effects data from 
the mid-points of the two central grooves were used for analysis. These 
values were used along with the system dimensions and material 
properties to calculate a Nusselt number defined as 

N u t : 
q-D 

A corresponding Rayleigh number was also calculated, 

Ra = 
P2gyCp (T2 - Tj) D* 

ixk 

(1) 

(2) 

The Ra range was achieved primarily by varying the pressure, di
rectly affecting the p2-term in eq. (2). Pressure ranged from 0.068 to 
10.2 atmospheres. Air was the working fluid throughout. In all ex
periments, the trapezoidal angle /3 was 30 deg, the base B was 2.54-cm 
and height D was 7.68-cm. 

The heated base was varied from 35 to 66° C while the copper cover 
varied over only a very narrow range, 26 to 28° C. Tilt angles from 0 
to 180 deg were covered. 

For the system using aluminum sidewalls, 73 experiments were 
performed with ten of these being replication experiments at previ
ously measured points. For the wood sidewalls, 109 experiments, in

cluding ten for replication, were undertaken. The replication test 
showed that reproducibility of 5 percent or better was achieved. 

Data Reduction 
Temperature measurements along the aluminum sidewalls showed 

very little variation with position, regardless of the tilt angle. The 
explanation for this behavior is that thermal barriers separated the 
aluminum from the hot and cold surfaces. Thus, the energy provided 
to the sidewall was quickly distributed over the sidewall and it as
sumed almost the average temperature between the hot and cold 
surfaces. Although not measured, approximately the same behavior 
would be expected for the wood sidewalls since they more closely 
approximate an adiabatic wall case. This behavior also prevailed for 
those cases where small amounts of sidewall heating were used. 

The total energy supplied to the heating elements is transported 
to the copper plate by convection in the air, radiation exchange, and 
conduction up the sidewalls. Also there is small conduction loss 
through the insulating superstructure underlying the heating ele
ments. Therefore, heat transfer due to radiation exchange and to 
conduction through the insulation must be subtracted from the total 
heat dissipated by the heating elements to obtain energy supplied 
from the absorber and sidewalls to the cover plate by conduction and 
convection. 

Conduction losses were calculated from a one-dimensional mod
elling of the structure underlying the heating tapes. The symmetry 
of the system and the minimization of edge and end effects give ade
quate justification for this technique. Radiation transport from the 

180° 
o wood sidewalls 
O aluminum skiewails 

O ° 

90° 
® wood sidewalls 
O aluminum sidewalls 

Analysis, Ret (2) 
Nu = .070Ra375 

^ ^ 

0° 
6 wood sidewalls 
<> aluminum sidewalls 

Nu= .109 Ra1^ 
Nu= .074 Ra375 

6 a 
O 

• • • * 

O 

s " * " ' 

Fig. 3 Experimental data for 0, 90 and 180 deg tilt angles 
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Analysis, Ref. (2) 
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^^£ 

^—® 

^p — 

a*"* 

*>* 

103 

Fig. 4 Comparison of data lor 60 and 75 deg to two-dimensional analysis. 
Correlating equations are also shown. 

heated surface can be calculated from a surface radiation analysis for 
the enclosure. An analogous electrical circuit was set up and used to 
generate three algebraic equations, one of which yielded the net 
radiative transport from the hot absorber surface. The radiation loss 
varied from 2 to 6 percent of the energy supplied for wood sidewalls. 
For aluminum sidewalls, it ranged from 2 up to about 4 percent. The 
conduction loss through the back of the system ranged up to 3 percent 
for the wood sidewall system and up to about 4 percent for the alu
minum sidewall case. 

The separation of conduction along the sidewalls from the con
vection to the air is somewhat more complicated than the conduction 
or radiation loss terms. Basically, the technique is based on the fact 
that as Ra approaches Rac, the convective effect tends to disappear 
and the net transport is by conduction through the air and the side-
walls. Pure conduction across the air can be calculated; for per
fectly-conducting sidewalls the Nuc would be 1.0; for adiabatic side-
walls, Nuc = 1.6. The experimental data for the aluminum sidewalls 
case showed that Nu ( approaches ~32 for Ra less than ~ 4 X 103 for 
all tilt angles. Therefore, to find the Nu due to convection from the 
heated surface to the air alone, a factor of 31 was subtracted from all 
data. Since the AT did not change appreciably over the entire Ra 
range for each sidewall material, the conductive effect remains ap
proximately constant. A similar correction was performed for the 
wood sidewalls case. 

An error estimate for the experimental data was carried out with 
the result that uncertainties of ± 10 percent would be the maximum 
expected for the Nu-Ra data points. The maximum uncertainty occurs 
at low Ra. Reference [1] contains the details of this error analysis. 

E x p e r i m e n t a l R e s u l t s 
Figure 3 shows the data plotted as Nu versus Ra for 0,90 and 180 

deg which encompass the full range of tilt angles. These data show 
that the effect of sidewall material is essentially negligible for this 
geometry, except for 180 deg (hot surface facing down). Ideally, this 
case is one in which pure conduction occurs. However, end effects and 
possibly small deviations from horizontal along the groove cause weak 
convection to occur. Apparently the aluminum sidewalls promote 
these convection patterns more readily than the less conductive wood 

sidewalls. At other tilt angles differences in the two sets of data be
come negligible within the accuracy of the experiments. 

As mentioned before, a two-dimensional heat transfer analysis was 
performed as a companion study to the experiments [2]. These cal
culations for 0 = 90 deg were stable up to Ra of about 2 X 106. A 
comparison of the analysis to the data for 90 deg shown in Fig. 3 shows 
good agreement for Ra up ~ 2 X 106. Figure 4 shows the data for 60 and 
75 deg along with the two-dimensional calculations for Ra up to about 
105. The agreement between the two-dimensional model and exper
iments gets progressively worse as the tilt angle decreases. This is 
probably a reflection of the fact that the flow undergoes a transition 
from a two-dimensional to a three-dimensional flow pattern as the 
angle is decreased. 

Figure 5 shows the complete set of data for wood sidewalls. Plotted 
in this way, the data show a minimum in Nu between 90 and 0 deg tilt 
angle. As Ra increases, the minimum moves closer to the 90 deg point. 
This phenomenon has been observed by several investigators. The 
data of Arnold, et al. [6] show this minimum occurring near the 90 deg 
point dependent upon the aspect ratio and Ra. Their data were lim
ited to Ra < 108 with Pr = 4.5 (water) and 2000 (silicone oil). Hart 
[7, 8] has shown that the minimum point is moved toward 0 deg for 
increasing Pr. The three-dimensional photographs of Ozoe, et al. [13] 
in a long square channel illustrate the physics responsible for the 
minimum. A change in the basic nature of the flow regime between 
0 and 90 deg occurs. At 0 deg, roll-cells with axes normal to the long 
axis of the channel are prevalent. At 90 deg, the flow is unicellular with 
the axis parallel to the long axis. Between 0 and 90 deg, the cells be
come oblique and finally undergo transition into a two-dimensional 
unicellular pattern at 90 deg. Ozoe's data were for glycerol (Pr = 
2700-3000) and Ra = 12,000; they exhibit a minimum very near the 
0 deg tilt angle. The trapezoid data for air in Fig. 5 show a minimum 
closer to 90 deg as the Ra increases. This behavior corresponds with 
the observations of Hart and Arnold. 

Correlations suggested by Hollands [4] and Randall [21] which are 
for plane geometries of large aspect ratio do not correlate the trapezoid 
data well especially at higher Ra. The aspect ratio is defined by the 
ratio of the width of the two heat transfer surfaces to the spacing be
tween the two surfaces. Using either of the lateral dimensions of the 
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trapezoid, the aspect ratio for the trapezoid data would be less than 
unity. Figure 6 shows a comparison of the trapezoid data to Hollands 
correlation for 45 deg. The data of Randall [21] for 45 deg are also 
shown for comparison. The trapezoid data lie generally above both 
Holland's correlation and Randall's data and the trend at higher Ra 
is significantly different. Ozoe's data for inclined channels [11] indi
cate that Nu increases for smaller aspect ratio at a fixed Ra. This could 
account for the lack of agreement between the trapezoid data and the 
parallel plate data of Randall and Hollands. 

For Ra above ~104 , the trapezoid data are correlated reasonably 
well by a power law similar to that suggested by Ozoe, et al. [11]. 
Following the suggestion of Clever [27], they correlated their data for 
rectangular enclosures with an equation of the form, Nu = C Ra". For 
air in a rectangular enclosure they found that Nu = 0.109 Ra1/3 fit 
their data for 0 deg tilt angle. Figure 5 shows Ozoe's correlation 
compared to the trapezoid data for 0 deg. The form of the equation 
is adequate, but for Ra > 104, an exponent of 0.375 and different 
coefficients are required. These correlating equations are shown on 
Figs. 3 and 4 and Table 1 lists the coefficients for all of the trapezoid 
data from 0 to 90 deg. 

This correlation provides excellent agreement for tilt angles above 
45 deg. For smaller angles, the correlation tends to overpredict Nu 
at higher Ra. 

120 90 

Tilt Angle, degrees 

Fig. 5 Heat transfer data for wood sldewalls. Dashed lines indicate expected 
behavior between 180 and 90 deg. 

S u m m a r y 

Experimental data for air in trapezoidal enclosures exhibit a local 
minimum in the Nu-tilt angle curve between 90 and 0 deg; the angle 
where the minimum occurs is a function of Ra and moves toward 90 
deg as the Ra increases. A comparison of the data to a two-dimensional 
analysis shows good agreement at 90 deg, but the agreement gets 
progressively worse as the angle is decreased toward 45 deg. This 
behavior is undoubtedly caused by a change from a two to a three-
dimensional flow pattern as the angle is decreased. A similar effect 
has been observed in rectangular inclined channels. 

The data are not correlated well by equations formulated for par
allel plate enclosures of high aspect ratio by Hollands and Randall. 
However, the data are correlated reasonably well in the region 104 S 
Ra < 107 by an equation of the form Nu = C Ra". 
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Natural Confection in a Porous 
Layer under the Influence of an 
Exothermic Decomposition Reaction 
A porous medium saturated with a gas is bounded by two impermeable planes. As the tem
perature of the lower side is increased, part of the porous matrix decomposes exothermi
cally into gaseous products. A two dimensional model which couples the effects of this re
action to natural convection is solved numerically. At first, the reaction dominates the 
phenomena; the temperature and velocity components increase and a thermal front pass
es through the layer. As the reaction dies out due to a depletion of reactant, convective 
effects alone remain. Though this final state is well known, the density of the fluid is, here, 
allowed to vary and, furthermore, an ideal gas instead of an incompressible liquid is con
sidered. 

I n t r o d u c t i o n 
For natural convection in a porous medium bounded by two iso

thermal planes, Lapwood [1] predicted the criteria for the onset of 
convection. The critical transition (conduction to convection) Ray-
leigh number derived (4ir2) has been verified experimentally by Katto 
and Masuoka [2]. Since then, numerous researchers [3, 4] have in
vestigated the convective flow for Rayleigh numbers exceeding the 
critical value; unsteady flows have been confirmed experimentally 
for a critical Rayleigh number (240-280) depending on the type of 
porous medium and on the cell dimensions. 

In general, the mathematical formulation is simplified by the 
Boussinesq approximation. The fluid density differences are neglected 
everywhere except in the buoyancy term of Darcy's law. This as
sumption is appealing for two reasons. 

1 The fluid is considered to be incompressible in the continuity 
equation and, thus, a simple stream function can be introduced. 

2 The density variations with pressure are also neglected in the 
equation of state. If, furthermore, the coefficient of thermal expansion 
is also assumed as constant, a linear state equation relating the density 
to the temperature only is obtained. 

When the imposed temperature gradient is significant, the fluid 
physical properties can no longer be considered as constant. Liquids 
subject to an important temperature difference exhibit an enormous 
decrease in viscosity. For this reason, Kassoy and Zebib [5], Home 
and O'Sullivan [6] and Straus and Schubert [7] consider the effects 
of variable viscosity on the stability of a porous layer. 

Porous layers with internal heat generation are treated in [8]; 
however, when heat and mass transfer occur simultaneously, the 
phenomenon is less well known. Consider a porous medium bounded 
by two impermeable planes and saturated with a gas. The matrix 
consists of a mixture of fiberglass and a resin. As the matrix temper
ature is increased, the resin decomposes exothermically into gaseous 
products. Some pipe insulators behave in this way when the tem
perature of the hotside is quite high. Prud'homme and Caltagirone 
[9] have solved a similar problem though they neglect convection and 
consider the process to be one-dimensional. 

In this paper, we propose a two-dimensional model which couples 
the effects of the decomposition reaction (heat generation and mass 
transfer) to natural convection. The resin density, fluid density, ve
locity components and temperature disturbances are obtained nu
merically using a finite difference scheme. The parameters introduced 
by the resin reaction (heat of reaction, order of reaction, initial resin 
concentration, etc.) play an important role in the evolution of the 
process. However, once the resin stock is depleted (partially or totally), 
convective effects alone subsist. This final state is also the focus of 

our attention. Though, as we mentioned, it has been widely investi
gated, the formulation used here has two basic differences. We con
sider the saturating fluid to be an ideal gas and we allow its density 
to vary everywhere. 

G o v e r n i n g E q u a t i o n s 
A plane porous matrix of thickness, £, is bounded by two imper

meable surfaces and initially at ambient temperature Tamb. At time 
t' = 0, the temperature of the lower surface (y' = 0) is increased to 7" 
= Tp. The porous matrix is composed of a mixture of a nonreacting 
fiberglass and a resin which decomposes exothermically into gaseous 
products as the matrix temperature increases. 

In order to simplify the equations, two main assumptions are 
made. 

1 The matrix properties remain unchanged during the reaction. 
This assumption is valid because in most commercial applications the 
weight fraction of nonreacting fiberglass is quite high (>9/10). 

2 The gaseous products and the fluid which initially filled the 
enclosed region are the same. In other words, we neglect diffusion 
between two different gases, the fluid properties correspond to those 
of a unique fluid. 

The equations of the phenomena are 

dp'A. 

bt' ' 
-k0 p' N

A i -EalRTi 

e — + V • p'B V = k0p"ie-E"lRT' 
dt 

V = - - [ V P ' - p ' f i g ] 

dT' 
(pc)* + (pc)B V • VT' = \l V*r + LHRkop'NAe-Ea/RT' 

i>t 

(1) 

(2) 

(3) 

(4) 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division May 
16,1980. 

The resin decomposition reaction of order N is expressed in terms 
of the resin density p'A. The resin is assumed to be stationary (it does 
not diffuse) and only one decomposition reaction is considered. For 
elementary reactions, the temperature dependent term is represented 
by Arrhenius' law [10]. 

Equation (2) is the fluid continuity equation with the production 
term in the right hand side. Darcy's law (3) is applicable for flow 
through porous media; the permeability K and the fluid viscosity /u 
are assumed to be constants. The energy equation (4) exhibits the heat 
generation term due to the exothermic reaction. The thermal con
ductivity of the porous medium XJ and the heat of reaction AHR are 
also assumed to be constants. The heat and mass production terms 
depend both on the resin density and on the temperature. Since the 
former is initially finite, a time will be reached when these terms will 
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no longer influence the phenomenon. 
The fluid equation of state is 

r PART' 
M 

(5) 

Equations (1-5) are rendered dimensionless with the following 
reference parameters: PAO for the resin density, PBO for the fluid 
density, (pc)*.£2/X0 for time, X0/(PC)B-£ for velocity, T ^ h for tem
perature, £ for length, and Po for pressure. Inserting the equation of 
state in Darcy's law, the dimensionless, two-dimensional system of 
equations becomes 

&PB , 
r 

dt 

(pc)* 

(pc)s 

&PA 

dt 
-<TIPV [ 1 - 1/T] 

dps , dpB . (oa dvX 
u 1- v + PB\ 1 

dx dy \dx dyl 
= 02p1e^-

u = -Pi 

V=-Pi 

dT 
— + u 
dt 

dT 
— +v 
dx 

PB — + T — 
dx dx 

n ^ A TdpB 

PB — + T — 
dy dy dT d2T d2l 

dx2 dy ! 

— RaGa PB 

n 

-+8, A leyll-UT] 

(6) 

-1/T] 

(7) 

(8a) 

(8b) 

(9) 

Apart from (pc)*/(pc)s and N, six dimensionless parameters ap
pear in the equations. 

koplo1 (pc)*£2e-y aiPAO 

ai _ ff2 _ ( 

7 

P i = 

Ea 

RTstmb 

K(pc)B PO 

PK 

b = 

PBO 

AHRk0p%£2e-y 

RaGa = 

Ao Tamb 

K(PC)BPBOS£ 

PK 

O>I, (72. 5, and y are introduced by the decomposition reaction; P i 
depends on the reference pressure, Po; and RaGa is the Rayleigh 
number multiplied by the Gay-Lussac number. Since the pressure 
gradients are created by density differences (natural convection) the 
reference pressure Po is taken as Po = PBog£- Thus, P i and RaGa 
become equal. Notice that since 8 = 1/T, for an ideal gas, RaGa is 
equivalent to a local Rayleigh number. 

The boundary and initial conditions in dimensionless form are 

dT 
— = 0; 
dx 

P A O = 1; PB = 1 for t = 0 

<>PB 

* amb 
v = 0 for y = 0 

dT 

ay" 
Bt [1-T\; 0 for y = 1 

dx 
0; u = 0 for x = 0 and x = 1 (10) 

Equations (6-9) with conditions (10) are solved numerically. 

N u m e r i c a l P r o c e d u r e 
The system of partial differential equations in dimensionless form 

(6-9) is solved using finite differences, for basic reading we refer to 
[11]. 

The decomposition reaction and fluid continuity equations are both 
first order; because of its simplicity, an explicit scheme is used for both 
of them. The energy equation (9) is solved by the implicit alternating 
direction method. Obviously, the boundary and initial conditions are 
accounted for when applicable. Once the fluid density and tempera
ture distributions are known, the velocity components u and u are 
calculated directly from (8a) and (8£>). 

For each time step, we assume that the fluid is in equilibrium with 
the resin and temperature distributions. Equation (7) and thus (8) 
are subject to iterations within each time step. 

The calculations proceed in the following way: once the initial 
conditions are given, the resin density profile is calculated from (6). 
By iterating (7) and (8a, 86) we obtain the fluid density and the ve
locity components. Finally, the temperatures are calculated from (9) 
and a new time step begins. 

In all calculations, a grid of 17 X 17 is employed. The disadvantage 
of using an explicit scheme is that the time step has to be sufficiently 
small to assure convergence. For a convergence error on the fluid 
density of 10~4, the time step size is 4 X 10~5 for (6) and (9) and 5 X 
10-6 for (7). 

The resin density, fluid density, horizontal and vertical velocity 
components and temperature distributions are thus obtained. With 
the aid of a tracer, isotherms and isochores (for both the fluid and the 
resin) are plotted. Though a stream function is not introduced, the 
velocity components are known and thus their magnitude and di
rection are traced at each grid point. 

The porous matrix corresponds to a commercial insulating material 
of high porosity ( t > 0.95). For simplicity we assume that (pc)* = (pc)s 
and X0 = AJ. The initial temperature distribution T — 1 + (Tp/Tamh 
— 1) (1 — y) + 0.1 cos 7T X sin 7ry is used. In a later section we discuss 
the precision of the numerical scheme used here; whether the grid and 
the time steps are sufficiently fine or not. 

Discussion 
The transient behavior of both the temperature and resin con

centration is shown in Figs. 1 and 2; the profiles are plotted at the same 
instants of time. The dimensionless parameters corresponding to both 

.Nomenclature.. 
Bi = Biot number (h£/\o) 
Ea = energy of activation (j/mole) 
g = acceleration due.to gravity (m/s2) 
Ga = Gay-Lussac number (1//3AT) 
h = heat transfer coefficient on the upper 

boundary (w/m2K) 
AHR = heat of reaction (j/mole) 
ko = frequency factor 
K = permeability (m2) 
£ = thickness of the porous layer (m) 
M = molecular weight of the fluid (kg/ 

mole) 
N = order of reaction 
P = dimensionless pressure 
Po = reference pressure (kg/ms2) 

P i = dimensionless parameter 
'K(pc)BP0' 

P.AJ 

Ra = Rayleigh number 

tK(pc)BPBQg£8kT\ 

\ M^o / 

t = dimensionless time 
T = dimensionless temperature 
Tamb = ambient temperature (K) 
Tp = lower surface temperature (K) 
u, u = horizontal and vertical velocity com

ponents respectively (dimensionless) 
x, y = horizontal and vertical coordinates 

respectively (dimensionless) 
8 — coefficient of thermal expansion (K_ 1) 

R = universal gas constant (j/mole K) 

7 = dimensionless parameter 

8 — dimensionless parameter 

AHRk0p%£2e-y 

X-o Tamb 

Ea 

K1 amb 

€ = porosity 
Ao = thermal conductivity of the porous me

dium (w/m K) 
p = fluid viscosity (kg/ms) 
PA = dimensionless resin density 
PAO = reference resin density (kg/m3) 
PB = dimensionless fluid density 
PBO = reference fluid density (kg/m3) 
(pc)* = heat capacity per unit volume of the 

porous medium (j/m3K) 
(pc )B - heat capacity per unit volume of fluid 

(j/m3K) 
ai = Dimensionless parameter 

k0P^-HPc)*£2e-y 

Ao 

<T2 = Dimensionless parameter 

primes denote real variables 

PBO 
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Fig. 1 Temperature distribution versus vertical direction for different values 
of / 

Fig. 2 Resin concentration versus vertical direction for different values of 
f 

figures are * = 0.5, y = 28, N = 4, Bi = 25, P i = Ra Ga = 50, Tp/TBmh 

= 2.42, 8 = in = <T2 = 10~5. The figures show that the temperature 
profile is disturbed by the exothermic reaction and vice versa. 

At first, the hotter lower surface ignites the decomposition reaction 
and the temperatures near this region become higher than the lower 
matrix temperature. This temperature increase is coupled with a 
decrease in the resin concentration (a minimum) since the resin de
composes fastest where the temperature is highest. Thus, a minimum 
resin concentration is located where the temperature is at max
imum. 

The thermal front then moves upward through the layer as a result 
of both conductive and convective transport and a similar process 
occurs. In the upper region, the temperature remains low since the 
Biot number is large. In the end, the resin concentration near the lower 
surface is too low for heat to be generated. At steady state, the familiar 
S -shaped temperature profile corresponding to unaltered natural 
convection is obtained. The minimum in the resin density also dis
appears, though after a longer time. 

The maximum temperature in the layer and the rate of reaction are 

4 

P1 = RaGa=50 

a1 = o 2 M 0 " 5 

N = 4 

Y=20 

2 0 ' to ' £o 

6 x l O 5 

Fig. 3 Maximum temperature In the layer as a function of & and y 

dependent on the magnitude of several parameters. As mentioned 
earlier, the values of the parameters correspond to those of a com
mercial insulating material. In some cases, a slight increase in just one 
parameter leads to an appreciable change in the profiles. The tem
perature profile is severely affected by both 8 and y which depend on 
the heat of reaction and the energy of activation, respectively. Figure 
3 shows the maximum temperature in the layer for different values 
of both of these. All the parameters mentioned above remain the same. 
When y is small, the resin decomposes very little for the considered 
values of 8. Thus, the temperature rarely exceeds the lower surface 
temperature and only convective effects influence the profiles. For 
y = 28, an increase in 5 is accompanied by a large increase in the 
maximum temperature in the layer. 

In order to visualize the two-dimensional aspect of the phenomenon 
and the importance of convective transport, Figs. 4 and 5 show (from 
left to right) the isotherms, resin and fluid isochores and the velocity 
profile for P i = RaGa = 30 and for P x = RaGa = 100, respectively, at 
different stages of the evolution. 

A critical transition conduction-convection RaGa number has been 
calculated by a linear stability analysis on the steady-state equations. 
The two coupled linear, ordinary differential equations with variable 
coefficients are solved by series. For Tp/T^ = 2.42, the critical RaGa 
number is 46. This implies (since /? = 1/T for an ideal gas) that the 
critical Ra number is equal to 38. The moderate density differences 
accounted for in all terms explain why this value is slightly lower than 
4TT2. 

For P i = RaGa = 30, the isotherms, resin and fluid isochores and 
the velocity profile converge toward a pure conduction, motionless 
regime. The last row of Fig. 4 corresponds to the steady state; the di-
mensionless velocities are smaller than 0.01. The isotherms are hor
izontal lines, the phenomenon is thus one-dimensional. 

When P i = RaGa = 100, the process is two-dimensional since the 
isotherms, resin, and fluid isochores vary with the horizontal axis. The 
velocity profile is arranged into a well-formed cell which is rotating 
clockwise. 

The bottom row in Fig. 5 was traced at steady state when only 
convective effects remained. A comparison with previous work is 
useful. 

For an incompressible fluid with constant physical properties and 
satisfying a linear state equation, the stream lines and the cell are 
symmetrical. When taking into account, for liquids, the temperature 
variation of the viscosity [5, 7] the cell is deformed downward. This 
is due to the fact that liquids move faster on the hot, low viscosity 
lower boundary where convection is concentrated. 
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From the steady-state profiles shown in Fig. 5, one can see that the 
cell is displaced towards the lower, right-hand side. In this region the 
vertical and horizontal temperature gradients (and thus the velocity 
components) are the highest. Since we have assumed that the fluid 
viscosity is constant, the nonsymihetry is caused by the terms V-Vpj 
in the continuity equation. 

The cell lateral displacement is more pronounced here than in ei
ther [5] or [7]. In the former, the Boussinesq approximation is invoked 
while in the latter only the density variations in the vertical direction 
are considered. The lateral temperature gradient is much smaller— 
one-fifteenth to one-sixth as large—than its vertical counterpart and 
thus the procedure in [7] is justified. 

The vertical displacement is less evident here than in [5,7]. These 
authors deal with liquids whose viscosity variation is very important. 
Here, only the moderate density differences pull the cell downwards. 
It would be most interesting to examine the viscosity effects for gases. 
Unlike liquids, as the temperature of the gas increases, its viscosity 
also increases. This would tend to counter the effects caused by the 
decrease in density. 

E r r o r Analysis 
By performing an overall heat and mass balance on the layer we can 

estimate the accuracy of the finite difference scheme. The error de
pends on the size of both the grid and the time steps; these were given 
previously. 

The total amount of fluid in the layer is directly related to the total 
amount of resin that has reacted. At any time £*, it can be shown 
that 

Fig. 4 Different stages In the evolution of (from left to right) Isotherms, resin 
Isochores, fluid isochores, and the velocity profile for P-, = RaGa = 30 

PB (t = t*) = pB (t = 0) + — [pA (t = 0) - pA (t = t*)] (11) 

where PA and ps are the average resin and fluid densities. In all cal
culations, the conservation of mas3 is observed to within 99.3 per
cent. 

The overall heat balance gives (in dimensionless form again) 

where T is the average temperature in the layer. To determine the 
heat input through the lower surface dT/dy\y=0 a fourth order dis
cretisation formula is used, all the other quantities of (12) are known 
directly. The calculated error is of less than 10 percent though it would 
have been lower if the precise value for dT/dy\y=o had been 
known. 

Figure 6 shows PA and T as a function of time. We can conclude 
from these results that the numerical parameters are adequate; a finer 
grid will give little additional precision while rendering the costs 
prohibitive. 

Concluding Remarks 

The problem considered couples the effects of two independent 
phenomena: convective movement and a chemical decomposition 
reaction. At the start of the evolution, the decomposition reaction 
perturbates the profiles while convective transport acts as a carrier. 
Then, due to a depletion of reactant, natural convection alone subsists. 
The numerical model used allows the fluid density to vary in all 
terms. 

Fig. 5 Different stages In the evolution of (from left to right) Isotherms, resin 
isochores, fluid Isochores, and the velocity profile for Pi = RaGa = 100 
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ftaGa =100 

N=4 

0 .1 .2 3 , 

t ime 

Fig. 6 The average resin concentration and the average temperature In the 
layer versus time (pA = Jo So PA(X, y, l)dxdy and T = J0 J'0T(x, y, t)-
dxdy 

At steady state and for the moderate conditions considered, the 

results show that if the density differences are accounted for in all 

terms, the cell formed is asymmetrical. The stability criterion is 

modified slightly, the critical Rayleigh number as expected is lower 

than Air2, the value obtained when invoking the Boussinesq approx

imation. 
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A Comparison of a Penalty Finite 
Element Model with the Stream 
Function-Vorticity Model of Natural 
Confection in Enclosures 
This paper is concerned with a comparative study of the stream function-vorticity formu
lation and penalty function formulation of the two-dimensional equations governing nat
ural convection in enclosures. The penalty function formulation presented herein is the 
only correct way of describing it for the problem at hand. The penalty-finite element 
model developed herein is novel with this work, and involves two velocities, temperature, 
and stream function as degrees of freedom at each node. The model includes, as a special 
case, the penalty-finite element model of natural convection in enclosures reported in the 
literature. Numerical results obtained using the two formulations are compared for sever
al geometries, and boundary conditions, and the effects of Rayleigh number and Prandtl 
number on the flow and heat transfer are studied. 

1 I n t r o d u c t i o n 
Convection phenomena induced by body forces have been the 

subject of many theoretical and numerical investigations. As pointed 
out by Ostrach [1] convection problems can be classified into two 
major types: external problems, such as the flow around a heated rod 
or plate caused by existence of a temperature difference between the 
body and the fluid; and internal (or confined) problems, such as the 
flow in a fluid-filled cavity caused by the temperature differences 
between the walls of the cavity. Due to their important role in many 
engineering problems of practical interest, internal problems have 
received greater attention. These problems include: thermal insulation 
of buildings, Batchelor [2], heat transfer through double-glazed 
window, Elder [3] and Gill [4], cooling of electronic equipment, Ped-
ersen [5], general circulation of planetary atmospheres, Hart [6], 
crystal growth from the melt, Carruthers [7], sterilization of canned 
foods, Hiddink, et al. [8], cooling fluids in channels surrounding a 
nuclear reactor core, Petuklov [9], convectively cooled underground 
electric cable systems, Chato and Abdulhadi [10], and many 
others. 

For internal high Rayleigh number (i.e., Ra > 103) flows, the region 
exterior (i.e., core) to the boundary layer is influenced by the behavior 
of the surrounding boundary layer. This coupling of the boundary 
layer and the core region constitutes the main source of difficulty for 
obtaining analytical solutions to internal problems, forcing one to seek 
numerical solutions. In order to capture the boundary layer effects, 
one must use a small mesh near the walls. This requires the use of a 
nonuniform mesh in the interest of accuracy and computational ef
ficiency (use of a nonuniform mesh is also necessitated by irregular 
configurations of enclosures). The inability of the finite difference 
methods to accurately describe irregular domains and permit the use 
of nonuniform, nonrectangular meshes, and the complexity involved 
in developing higher-order finite difference approximations have lead 
the researchers to consider the finite element method, which is known 
to have overcome the above mentioned shortcomings of the finite 
difference method. The feasibility of the finite element method to 
convection heat transfer in rectangular enclosures has been studied 
by Tabarrok and Lin [11] using the stream function-vorticity-tem-
perature formulation, Gartling [12] using the pressure-velocity-
temperature formulation, Heinrich, et al. [13, 14], and Reddy and 
Mamidi [15, 16] using penalty function methods. The penalty for-

1 Present address: Department of Engineering Science and Mechanics, Vir
ginia Polytechnic Institute and State University, Blacksburg, VA. 
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mulation described by Marshall, et al. [14] is completely ad hoc, and 
problem oriented. 

In the present paper a correct way of formulating the problem by 
the penalty function method is described. The penalty formulation 
presented herein for natural convection in enclosures treats the in-
compressibility condition and stream function-velocity relations as 
constraints. Therefore, as a special case, the present model includes 
the penalty models described in [13-15]. Further, two formulations, 
namely, the stream function-vorticity formulation and a penalty 
function formulation are compared for relative accuracy and com
putational time. The present results are also compared with those of 
other investigators available in literature. 

2 G o v e r n i n g E q u a t i o n s and F o r m u l a t i o n s 
Under the standard assumption of convection heat transfer (i.e. 

Boussinesq approximation holds), the two-dimensional equations 
governing a Newtonian fluid in the presence of a temperature gradient 
(but in the absence of other body forces) can be written as, 

conservation of mass: 

du du 
— + — = 0 
dx dy 

conservation of linear momentum: 

1 dP 
A{u) = + 

Po dx 

d2u 
2 — ; : + 

dx2 

d Idu dv\ 

dy\dy dx). 

(1) 

•gP(T-T0) (2) 

1 dP 

A(v) = + v 

Po dy 

conservation of energy: 

A(T) = a 

d*v dv) . . d Idu 
2 — - + — \— + 

dy2 dx \dy dx, 

d2T 

dx2 

where a is the thermal diffusivity, 

a = k/p0Cp,A 
d d 

• u \- v — 
dx dy 

(3) 

(4) 

(5) 

and x is taken positive downward (i.e., along the acceleration due to 
gravity). Here (u, v) are the components of velocity along (x, y)— 
directions; P is the pressure; T is the temperature (To is the reference 
temperature); po is the reference value of the density of the fluid; v 
is the kinematic viscosity, j3 is the coefficient of thermal expansion; 
k is the thermal conductivity; Cp is the specific heat at constant 
pressure; and g is the acceleration due to gravity. To complete the 
description of the equations, equation (1-4) must be adjoined by 
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appropriate boundary conditions of the problem. We assume that the 
following general boundary conditions (of mixed type) are speci
fied. 

a — n x H ny\ = q on dilir, T = T on dilzr 
[dx dy j 
I du _\ [du dv\ » 

tx = \2v P \nx + v 1 ny = tx on diiiu 
\ dx I \dy dxj 

[du dv\ I dv _\ 
h s v ' nx + \2v P\ny = ty on d\l\v 

\dy dxl \ dy I 

u = u on dQzu, v = v on dfl2u, f = -P/po 

(6) 

(7) 

(8) 

Here n = (nx, ny) denotes the unit normal to the boundary dfi; and 
dfli and d^2 denote disjoint (i.e., dfii 9± 0)^2) portions of the total 
boundary dfi of the bounded region fl. That is, 

dfliu + d^2u = dfii„ + dfi2u = dQ = dQir + dfl2 (9) 

That is, dfiiu and dfiiu denote the portions of the boundary on which 
the tractions tx and ty, respectively, are specified; and dQ^u and dQ2u 
denote the portions on which the velocities are specified. Quantities 
with a carat (*) denote specified quantities on the appropriate 
boundary. Further, we use the following variables for the nondi-
mensionalization. Let d denote the length of the enclosure (along y), 
£ the height (along x), and T/, and Tc the temperatures of the hot and 
cold walls, respectively. 

The above equations in the primitive variables (u, v, p, T) are often 
replaced by equations in terms of the descriptive variables (\p, f, T) 
for numerical approximations. The stream function \p is introduced 
to satisfy the incompressibility condition (1). Define the stream 
function by 

df 
ay' 

di/< 

dx ' 

and the vorticity, f, by 

f = — - — =-v2 f . 
dx dy 

Consequently, equations (1-4) reduce to 

-v2r=Jo/',n+* 
dy ' 

-VV = f, 

V2T = -J(i/<, T), 

(10) 

(11) 

(12) 

(13) 

(14) 

J(p, q) = (15) 

where J(-, •) is the Jacobian, 

dp dq dp dq 

dx dy • dy dx 

We now give two formulations, one based on the primitive variables 
equations (1-4), and the other based on the stream function and 
vorticity equations (12-14). It is convenient to recast these equations 
in terms of the normalized (i.e., nondimensionalized) variables. We 
use here two different normalizations (i = 1, 2). 

x = x'd, y = y'd, u = u'Ui, u = u'Ui, 

8 = (T - Tc)/{Th - Tc) (16) 

P = P'Ui2p0, Ui = ai/d, 

where <x\ = a, and a-i = v, and the quantities with primes denote the 
nondimensional variables. For the sake of brevity, we shall omit the 
primes in the following. 
' Penalty Formulation. The penalty function concept of Courant 
[17] involves the reduction of variational problems which are posed 
as conditional extremum problems to variational problems without 
constraints by the introduction of a penalty functional associated with 
the constraints. The concept has been known for a long time, and at 
the present time many investigations are devoted to the exploitation 

of the concept of other situations, and applications to particular 
problems. Zienkiewicz [18], guided by the analogy between nearly 
incompressible elasticity and Stokes problem, suggested the appli
cation of the penalty method to viscous incompressible flow problems; 
in [13-15, i8] the incompressibility condition is treated as the con
straint. Another modification is suggested recently by Reddy [16], who 
treated, in order to introduce the stream function into the primary 
calculations, the stream function-velocity relations along with the 
incompressibility condition as constraints. The formulation presented 
in [16] is the only correct way to describe the penalty formulation of 
natural convection in enclosures. 

The penalty method seeks to satisfy the constraint conditions in 
a least squares sense. Applied to the problem at hand, i.e. find the 
solution (u, v, P, T) to equations (1-4) subject to the constraint con
ditions in (1) and (10), the penalty method seeks solutions to the 
variational problem, 

81 (u, v, \p, 8) = 8I0(u, v, 8) + 8G(u, v, \/s) = 0 

where u, v, \j/, and 8 are the nondimensional variables, and 

(17) 

5/>,u,yM)= f [A(u) - PrRa0]fo + Pr 
du d&u 

2 
dx dx 

du d8v 
+ 2 + 

dy dy 

+ A(u)8v + A(8)88 + • 

du dv\ld8u d8v 
—+ — + 
dy dxl\ dy dx 

d8 d88 d8 d88) 

dx dx 

— 1 ix 8u ds — j 

+ - r 
2 Jsi 

dy dy 

ds- f 

dxdy 

dy) \ dx 

1 ds (18) 

dxdy (19) 

Here Pr is the Prandtl number, Ra is the Rayleigh number, 

Pr = i>/a,Ra = gPd:i(Th-Tc)/i>a, (20) 

and ei and 62 are the penalty parameters (for normalization i = 1). 
Note that in the penalty method, the pressure does not appear. This 

is because the pressure is the Lagrange multiplier associated with the 
incompressibility constraint, which is satisfied only in a weak sense 
in the penalty method. However, the Lagrange multiplier can be 
computed in the penalty method by (see Polyak [19]) 

1du£ dv6 —- + —-
dx dy 

(21) 

Convergence of the solution (u„ ve,Pt,\p(, 8e) of the penalty formu
lation to the true solution (as e —• <*>) can be proved (see [19-22]). 

Stream Function-Vorticity Formulation. In terms of the 
nondimensional variables, equations (12-14) can be expressed as 

dy 

- v2^ = r, 
- V20 = aiJty.O). 

(22) 

where (a,-, 6;, c;) denote the coefficients for the two types of nondi-
mensionalizations. 

(ai, fci, ci) = (1, 1/Pr, Ra), (a2, b2, c2) = (Pr, 1, Gr). (23) 

Here Gr denotes the Grashoff number, Gr = Ra/Pr. The variational 
formation of equations (22) indicate that either 8, f, and \p be specified 
on portions of boundary or their normal derivatives be specified there. 
This presents a problem with regard to the vorticity f which is gen
erally unknown on the boundary. It is now a common practice (see 
[11]) to approximate the boundary values of f using the second 
equation in (22). The Taylor series expansion is employed to express 
the stream function inside the domain in terms of its values on the 
boundary: 
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&i = fw + 
2 \dn2)j 

(Are)2 + . (24) 

where (•) | w is the value at the wall of the enclosure, and An is the 
normal distance from the wall to a point (or node) i. Using f„, = 
- d2^w/dn2 ar"d noting that \pw = constant = 0 along the solid wall 
0f the enclosure, we obtain (omitting the higher order terms in 
equation (24)), 

^ = ~7?V (25) 

( A n r 

The variational formulation of equations (22) is given by 

B(f,?) = b iJ^,f;?) + ciQ(I:), 
Bty J ) = RdA), (26) 

B{8,8) = aii(ip,8; 8), 
where 

B(P,q)= f ( ^ a + ^ W 
•Ja \dx dx dy dyl 

J(p,q;f)= f J(p, q)f dxdy, (27) 
Ja 

Q(f) = f — f d*dy, fl W = f M dxdy. 
«/Q oy «^n 

Here we assumed that the boundary values of \p, f, and 8 are speci
fied. 

3 F i n i t e - E l e m e n t F o r m u l a t i o n s 
Penalty-Finite Element Model. In the penalty method, we 

discretize the region occupied by the fluid into a finite set of subre-
gions, called finite elements. We consider a typical finite element, Qe, 
and develop the finite element equations corresponding to the 
equations (17-19). We assume the following interpolation of the 
variables (u,u,\(/,0) over the element fle. 

u = 2>;N;bc, y), u = 2>;JV,-(x, y), 

^=T.fiNi(x,y), 8=Z6iNi(x,y), (28) 

wherein Ni(x, y) are the interpolation (or shape) functions, which 
depend on the type of element chosen; and ui, ui, \f/{, and 0; are the 
values of the functions (u, u, \p, and 8) at the i- th node of the element. 
In the present paper a bilinear quadrilateral element (with four nodes) 
is used. 

Since the variational formulation (17) is valid in ft it is valid, in 
particular, in Qe with tx, ty and q are assumed, for the moment, to be 
known on the element boundary. Substituting (28) into the element 
equation corresponding to (17), we obtain (collecting the coefficients 
of 5UJ, Si;*, 5i/<; and 50;), 

[K"]{Ae) = \F'\, [Ce]{8e\ = (Q*|, (29) 
wherevj, Si/'; and S6i), 

[Ke]{Ae] = {Fe}, [Ce]{0e| = \Qe], (29) 
wherevi, 5\j/i and 60;), 

[tf«]|A«| = I**), [C]|0"| = |Q«|. (29) 
wherevi, d\pi and 60;), 

\Ke}W\ = \F° 

Cij° = Aij + Sij* + Sijy, Aij = f NiA(Nj) dxdy, [S] = [S00], 
Jne 

V = C Ni.(Nj,vdxdyA$,V=0.x,y), S;,-« = V . etc. 

Hif = An + Pr(2Sy* + Sij^), Hij> = A{j + P r ( 2 S ; / + S ; / ) , (30) 

| F - ) = ' i F , - , F ^ r , |A«) = \m, m, ftp, |fl«} = |fljP, 

F;* = PrRa f 0JV; dxdy + C ixNi ds, 
Jae Ji>u\ue 

Fty= f tyNids,Qie= f qNids. 

Note that the matrix [A] is computed assuming that a and u are 
known a priori, necessitating the use of an iterative procedure for the 
solution of the assembled equations. By setting €2 to zero, one obtains 
from equation (29), the penalty finite-element model presented in 
[13-15]. 

S t ream Funct ion-Vort ici ty Finite Element Model. Using in
terpolation of the form in equation (28) in equations (26), we ob
tain 

[B' - WW] = \F"}, 

(31) 

where 

[Be - a;Je]j0e | = (0), 

B,7
e = B(Ni: Nj), Jij* = J ty , Nr,Nj), 

Fjl* = CiQ(Nj), Fj*e = R(Nj), (32) 

and B(; •), J(-, •; •), Q(-) and R(-) are given by equation (27). 
Computational Procedure. The element equations in (29) and 

(31) are assembled in the usual manner to obtain the associated global 
matrices. However, these matrix equations are nonlinear and require 
iterative procedures. The following iterative procedure is employed 
in the present study. At the beginning of the first iteration the matrix 
coefficients are computed assuming that the velocity vector is zero. 
Then the temperature equation is solved for [0], Using the computed 
temperature, the velocity and stream function equations are solved, 
completing one cycle of iteration. Using the velocity (and/or stream 
function) field obtained in the previous iteration, matrix coefficients 
for the next iteration are computed and the procedure is repeated 
until the Euclidean norm of the difference of the solutions at any two 
successive iterations becomes sufficiently small (say, <10 - 4) . In the 
present study we used, to accelerate the convergence, a weighted sum 
of the variables in computing the matrix coefficients for the next it
eration. For example, at the end of rth iteration we have, 0 < pi, pi 
< 1, 

Pl{u\r + (1 - pi){u| r-l, 

' P2\8}r + (1 - p2)|0)r-l. 
(33) 

One can transfer the nonlinear (convective) terms to the right side 
of the equation and assume that it is known from the previous itera
tion. This gives a constant coefficient matrix and saves computational 
time in recomputing the coefficient matrices during each iteration. 
However, this procedure is found to result in divergent solutions even 
for moderately high Rayleigh numbers. 

The algebraic complexity and the nonlinear nature of the matrices 
in equation (30) forces one to use numerical integration to evaluate 
various matrix coefficients. Another reason which necessitates the 
use of numerical integration is the "reduced integration" required by 
the penalty method. To establish the existence and uniqueness of 
solutions, the penalty-finite-element approximations should satisfy 
the continuity and coercivity conditions of a generalized Lax-Milgram 
theorem (see Oden and Reddy [23]). These conditions are satisfied 
by the penalty finite-element approximations, provided the parameter 
appearing in the coercivity condition is independent of the mesh size. 
That is, the finite element chosen for the penalty method be such that 
this parameter does not depend on the mesh size. It is found that (see 
Zienkiewicz, et al. [24]) numerical integration of matrix coefficients 
associated with the penalty functional G(u, v, \p) with one less number 
of Gaussian points (in each direction) will ensure that the parameter 
is independent of the mesh size. Further study in this direction seems 
to be necessary. 

Alternate but more direct explanation of this latter observation is 
also given here. The penalty-finite element equation (29) has the form 
Ui = E2 = f), 

([JCil + e[Ki]){A\ = [F\. 
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As f is increased to a large value (in an attempt to satisfy the con
straints more closely), the magnitude of [ifi] in comparison to £[if2] 
becomes negligible in the computer, and we have 

e[K2][A} = {F\, or[K2]|A) = - m 
£ 

(35) 

This implies that as £ is made larger and larger only constraint 
equations are left (which results in a trivial solution since £_1 ~ 0), and 
the contributions of conservation of momentum and energy are lost. 
To circumvent this difficulty two things must be done. First, the 
magnitude of £ be such that the matrix [if i] is not negligibly small 
compared to [if 2]. Second, the matrix [if 2] must be singular so that 
there are less number constraint equations than the number of un
knowns. This can be achieved by using reduced integration on the 
elements of [if 2]. That is,Jhe standard 2X2 Gauss rule must be used 
to evaluate the elements of [if J, whereas only 1X1 Gauss rule must 
be used to evaluate the elements of [if2]- A value of £1 = £2 = f = 108 

was used in all problems discussed here. 

4 Numer ica l Results and Discussion 
In any approximate method, physics of the problem plays a crucial 

role in constructing a reasonable approximation. The finite element 
method is no exception. For example, one needs to visualize, using 
physical arguments, possible flow and temperature patterns in an 
enclosure in order to lay a mesh that can reasonably approximate what 
is intuitively expected. In the case of high Rayleigh number flows in 
rectangular enclosures, boundary layer appears (due to the no-slip 
boundary condition) at the walls. Since the boundary layer influences 
the behavior of the core region, it must be modeled adequately by 
employing refined mesh at the walls. Another important consider
ation, when using an approximate method, is in the specification of 
the right boundary conditions of the problem at hand. In the penalty 
formulation, all physical boundary conditions can be handled without 
difficulty. 

Here we compare the numerical results obtained by the penalty-
finite element model and the stream function-vorticity finite element 
model for free convection in rectangular enclosures. The right and left 
vertical walls of the enclosure are maintained, respectively, at hot and 
cold (0C = —0.5, 9h = 0.5) temperatures, and the top and bottom 
(horizontal) walls are either insulated or have specified temperature 
variations (see Fig. 1). The models are compared for relative accuracy 
and computational time. Since most of the previous investigators 
presented results in graphical form, it is not possible to compare the 
present results quantitatively. However, present results are compared 
for Nusselt numbers, vorticity and stream function values with those 
available in the literature. 

First, the effect of the two normalizations mentioned earlier on the 
numerical convergence was studied. Normalization 1 (i = 1) was used 
in both models, while Normalization 2 (i = 2) was used only in the 
stream function-vorticity model. All of the calculations were carried 
in double precision on an IBM 370/158 computer. It was found that 
the use of Normalization 2 presents convergence problems for Ra > 
104 and Pr < 1. The numerical procedure used there employed the 
constant coefficient matrix, treating [F1] in equation (31) as known 
from the previous iteration. The slow convergence (or divergence) is 
a direct result of this numerical procedure, which yields numerical 
solution proportional to C2 (or inversely to the Prandtl number). Thus 
any error in dd/dy is amplified in this procedure and leads to non-
convergent solution. Normalization 1 was found to give faster con
vergence, even for large Rayleigh numbers, for both formulations. 

Next, penalty-finite element model with stream function included 
in the model (i.e., £2 # 0) was compared with the penalty-finite ele
ment model without stream function (i.e., £2 = 0). The model problem 
used was that of a square cavity with top and bottom walls insulated. 
A12 X 12 mesh of linear elements (see Fig. 1) was used in both models. 
The vorticity was computed at the Gauss points in both models. The 
stream function in the second model (£2 = 0) was calculated using 
equation (11), in which the velocities are known from the primary 
calculations. It was observed that the isotherms and streamlines (for 
Ra = 103, Pr = 10)' obtained using the two models were virtually the 
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Fig. 1 Isotherms and streamlines obtained by the penalty-finite element 
model {€3 = 0, Ra = 103, and Pr = 10) 

S O 

5 0 . 

7 0 

Fig. 2 Velocity and temperature distribution along the center lines of the 
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Fig. 3 Isotherms and stream lines obtained by the penalty-finite element 
model for Ra = 10,000 and 1,00,000 (Pr = 1) 

same; however, the computational time and the value of ̂  at the 
vorticity center differed: ^max = 1.1697, cpu = 25 s/iteration for £2 ^ 
0, and l̂ max = 1.1689, cpu 15 s/iteration for £2 = 0. Therefore, the re
maining problems were analyzed using the second model (£2 = 0). 

The effect of the Rayleigh number (for fixed Prandtl number) on 
the velocity and temperature fields was investigated using the two 
formulations. Figure 2 shows the vertical component and the tem
perature along the (horizontal) center of the cavity. The results were 
obtained by the penalty-finite element model with a 10 X 10 uniform 
mesh for Ra = 103,104, and 12 X 12 nonuniform mesh for Ra = 106, 
of linear elements. Figure 3 shows the isotherms and stream lines 
obtained by the penalty-finite element model for Ra = 104, and 106, 
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and Pr = 1. The numerical results obtained by the stream function-
vorticity finite element model, for Ra = 103 and 104, were found to be 
very close to those obtained by the penalty-finite element model and 
cannot be plotted distinctly on the present scale. Therefore, the results 
are compared in Table 1 for Ra = 103,104, and Pr = 1. As can be seen 
from the table, the penalty-finite element model (PFEM) predicts 
values of the stream function lower than those predicted by the stream 
function-vorticity finite element model (SVFEM). However, the 
stream function-vorticity finite-element model did not give conver
gent results for these two Rayleigh numbers. Thus, the penalty for
mulation could be used to analyze higher Rayleigh number flows than 
those could be analyzed by the stream function-vorticity model. 
Figure 4 shows isotherms and stream lines obtained using the pen
alty-finite element model (with 12 X 12 nonuniform mesh) for Ra = 
106, and Pr = 1. 

Figures 3 and 4 show that isotherms tend to be vertical in the 
(thermal) boundary layer at vertical walls (i.e., vertically stratified) 
and they are horizontal in the core region. The vorticity and stream 
function values at the center of the enclosure obtained by both for
mulations are compared in Table 2 for various Rayleigh numbers and 
Prandtl numbers. Again, the results obtained using the penalty finite 
element model (also see [13]) are lower than those obtained using the 
stream function-vorticity model. However, the vorticity values in the 
penalty model were computed at the Gaussian points (which do not 
coincide with the vorticity center) and therefore would not be the 
same as those computed at the vorticity center. 

The vorticity distribution along vertical cross-section of the en
closure is shown in Fig. 5 for Ra = 104. In the penalty-finite element 
model, the vorticity was computed from the velocity field at the 
Gaussian points. Note that the solutions obtained by both formula-
Table 1 Comparison of the stream function and tem
perature values obtained by the penalty-finite element 
model (PFEM) and stream function-vorticity finite ele
ment models (SVFEM) (Pr = 1.0, Mesh: 10 X 10) 

Quantity 

Stream function 
a t y = 0.5 

Temperature at x 
= 0.5 

x/y 

0.0 

0.1 
0.2 
0.3 
0.4 
0.5 

1.0 

0.9 
0.8 
0.7 
0.6 
0.5 

Ra = 
PFEM 

0.0 

0.1566 
0.5011 
0.8410 
1.0755 
1.1581 

0.5 

0.3871 
0.2777 
0.1765 
0.0851 
0. 

= 103 

SVFEM 

0.0 

0.2236 
0.6094 
0.9746 
1.2228 
1.3098 

0.5 

0.3851 
0.2744 
0.1734 
0.0832 
0. 

Ra = 
PFEM 

0.0 

0.7067 
2.2585 
3.7707 
4.7925 
5.1474 

0.5 

0.2646 
0.0883 
0.0011 

-0.0150 
0. 

= 104 

SVFEM 

0.0 

0.9811 
2.7201 
4.3745 
5.4913 
5.8797 

0.5 

0.2514 
0.0733 
0.0006 

-0.011 
0. 

Table 3 Comparison of the Nusselt number obtained by 
various investigators (Ra = 1.47 X 104, Pr = 0.733) 

Source 

(PFEM 
Presents 

ISVFEM 

Tabarrok and Lin [11] 

Catton, et al. [25] 
Cormack, et al. [26] 

Wilkes, et al. [27] 
Ozoe, et al. [28] 

Nusselt 
number 
(Nu)* 

2.360 

2.687 

2.695 

2.71 
2.64 
2.874 
2.516 
2.75 

Remarks 

4-node rect. element 
.(10 X 10 mesh) 

4-node rect. element 
(10 X 10 mesh) 

3-node triangular element 
(10 X 10) 

Galerkin Method 
21 X 21 FDM 
11 X 11 FDM 
21 X 21 FDM 
experiment 

tions are almost identical for Pr = 1; however, for small Prandtl 
numbers there seems to exist small differences in the solutions. 

Table 3 shows a comparison of the Nusselt number computed by 
various investigators (for square enclosure, Ra = 1.47 X 104, Pr = 
0.733). Note that the Nusselt number obtained by the penalty-finite 
element model is the lowest of all. In Table 4 the two finite-element 
formulations are compared for computational time (in cpu), number 
of iterations taken for convergence, and the Nusselt number. The 
penalty-finite element model requires only slightly more (because of 
the computation of xp) time than the stream function-vorticity model; 
however, the number of iterations required is smaller in the former 
model. 

Figure 6 shows the effect of Prandtl number on the temperature, 
stream function and vorticity (for Ra = 104). These solutions were 
obtained using the stream function-vorticity finite element model. 
Similar plots for the temperature and stream function were obtained 
by the penalty finite element model, but due to their close agreement 
with those obtained by the stream function-vorticity finite element 
model, they are not shown here. Different Prandtl numbers, for a fixed 
Rayleigh number, mean fluids with different (material) properties. 
For fluids with low Prandtl number (i.e., ratio of viscosity to thermal 
diffusivity), the stream lines and vorticity lines show symmetry about 
the center. 

Figures 7-9 show the effect of the aspect ratio (height to width of 
the enclosure, y = Bid) on the temperature and flow fields. All of the 
results were obtained by the penalty-finite element model. Figure 7 
shows the isotherms and stream lines fora rectangular enclosure of 
aspect ratio 3. The Rayleigh number and Prandtl numbers are the 
same as those used by Heliums and Churchill [30]. Ra = 1.466 X 104, 
Pr = 0.733. The present results agree qualitatively with those of 
T a b l e 2 S t r e a m f u n c t i o n and vor t i c i ty va lues at the 
c e n t e r of t h e e n c l o s u r e (10 X 10 m e s h ) 

Ra 

103 

104 

Pr 

10~2 

10"1 

1 

101 
10z 

io-2 

10"x 

1 

101 

102 

Stream function (\p) 
PFEM 

1.1386 
1.1561 
1.1581 

(1.18)* 
1.1581 
1.1581 

5.0128 
5.0403 
5.1474 

(5.13)* 
5.2016 
5.2070 

SVFEM 

1.2636 
1.3041 
1.3096 

1.3098 
1.3098 

5.4504 
5.5451 
5.7823 

5.8797 
5.8892 

Vorticity (£) 
PFEM 

-31.26 
-31.41 
-31.31 

-31.32 
-31.32 

-96.32 
-101.5 
-103.1 

-106.9 
-107.3 

SVFEM'' 

-33.36 
-34.44 
-34.52 

-34.52 
-34.52 

-83.99 
-88.94 
-99.78 

-104.1 
-104.5 

* Values from reference [13], wherein a 4 X 4 mesh of the 9-node rectangular 
elements was used. 

Table 4 Comparison of the Nusselt number, computa
tional time and number of iterations required for con
vergence («) for the penalty finite element model 
(PFEM 1) and stream function vorticity finite element 
model (SVFEM) 

Penalty finite element 
Stream function-

vorticity 
Ra 

103 

104 

Pr 

IO"2 

io-1 

1 

10 
102 

IO"2 

io-1 

1 

10 
102 

nt 

11 
9 
8 

8 
8 

20 
20 
16 

17 
17 

cpu 

3.09 
2.38 
2.33 

2.29 
2.25 

5.26 
5.33 
4.26 

4.33 
4.37 

Nu 

1.0992 
1.1558 
1.1666 

(1.14)* 
1.1666 
1.1666 

1.9993 
2.0390 
2.1318 

(2.49*) 
2.1440 
2.1442 

n 

18 
16 
16 

15 
15 

22 
28 
26 

20 
20 

cpu 

2.55 
2.36 
2.39 

2.34 
2.31 

3.35 
4.28 
4.05 

3.13 
3.12 

Nu 

1.2582 
1.1367 
1.1387 

1.1387 
1.1387 

2.2004 
2.2600 
2.3962 

2.4144 
2.4146 

* Nusselt number is defined (in the present coordinates) by, 

P — I 
' 0 dy\y 

M Cld6\ J 
average, Nu = I — ax. 

Jo dy y-o 

* convergence tolerance, 10-4. 
* values from reference [13], wherein a 4 X 4 mesh of nine-node rectangular 

elements was used. 
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Fig. 6 Isotherms, Isostreams, and equivorticlty lines for various Prandtl 
numbers by stream function-vorticity formulation (Ra = 10") 
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Fig. 5 Vorlicity distribution along vertical cross section (Ra = 100,00, Mesh: 
10 X 10) (a) stream function-vorticity model (SVFEM) (b) penalty FEM 
(PPEM) 

Heliums and Churchill. Figure 8 shows similar results for a rectangular 
enclosure of aspect ratio 1.83, and with linear temperature distribution 
on the horizontal walls as indicated in the figure (Ra = 8,200, Pr = 
2,450). This example is the same as that considered by Szekely and 
Todd [31], who have computed experimental and finite difference 
solutions. The plotted values of the steady-state isotherms seem to 
agree well with those of Szekely and Todd. In general, it was observed 
that for larger aspect ratios the numerical solutions converged faster. 
Finally, Fig. 9 shows similar results for an aspect ratio of 16, Ra = 106, 
and Pr = 1. This problem was studied experimentally by Elder [29] 
for slightly different Rayleigh number (Ra = 3 X 106). A symmetric 
(about the center) but nonuniform mesh of 24 X 14 was used. The 
isotherms and stream lines shown in Fig. 9(a) are those obtained at 
the end of 30 iterations, with the error (in the velocity field) between 
the last two iterations being less than 10~3. Due to time limitation on 
the job card, the solution at the end of thirty iterations was stored on 

4/ e 
7=3 

Fig. 7 Isotherms and stream lines for Ra = 14,660, Pr = 0.733 

a tape using free format. The computation was initiated with the so
lution on the tape as the starting value for the 31st iteration. After 30 
more (i.e., total 60) iterations, the error was found to be only slightly 
less than that computed at the end of the first 30 iterations, and 
computation was terminated plotting the isotherms and stream lines 
(see Fig. 9(6)). While the isotherms virtually remained unaltered, the 
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7 = 1.83 
Fig. 8 Isotherms and stream lines for Ra = 8200, Pr = 2450 

stream lines in the core region separated into small cells. Also, the 
stream lines in the boundary layer remained stratified vertically. The 
results in Fig. 9(a) seem to agree, qualitatively, well with those re
ported by Elder. 

In closing we present numerical results for a nonrectangular en
closure (see Fig. 10). Figure 11 shows isotherms and stream lines for 
Ra = 104 and 106, Pr = 1. The top and bottom walls were assumed to 
be insulated. Since no results are available in the literature at this 
writing, comparison is not made. These results could serve as test cases 
for future numerical invvestigations. 

5 Conclusions 
Compared to the mixed finite element model of Gartling [12], the 

stream function-vorticity finite element model, and the penalty-finite 
element models seem to be computationally simpler. The mixed 
model, by formulation, results in a large system of (non-positive 
definite) equations. Without special consideration, results obtained 
for the pressure are often erroneous. The stream function-vorticity 
model suffers from the disadvantage that the boundary conditions 
on the vorticity be known a priori. De Vahl Davis [32] pointed out that 
computation of the boundary values of the vorticity from the stream 
function could result in up to 30 percent error. The results obtained 
by the penalty method are on the lower side of those obtained by the 
stream function-vorticity model. It is desirable to have experimental 
results in order to compare and make accuracy evaluation of the for
mulations. The stream function-vorticity model presents convergence 
problems for Rayleigh numbers higher than 104. In the penalty model, 
one is required to assess an optimal value of the penalty parameter. 
For very high Rayleigh numbers, the penalty parameter should be 
very large, and this in turn (coupled with word length in the computer) 
could cause the equations ill-conditioned. 

In the present study, only moderate Rayleigh numbers were stud
ied. For Rayleigh numbers higher than 106, say of the order 107-109, 
most traditional numerical schemes have computational difficulties 
(in terms of convergence and numerical stability). The so-called up
wind differencing could prove to be very effective. In order to use the 
upwind differencing a logical procedure that can be automated on the 
computer must be thought out for the finite element method. This 
area seems to be open for additional research. Another area for which 
sufficient information is lacking is the free convection in nonrectan
gular (or irregular) and three-dimensional enclosures, In both cases, 
unsteady analyses need to be performed. Theoretical as well as nu
merical investigations into instabilities at high Rayleigh numbers (say, 
in the turbulent region) are definitely far from complete. 
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Fig. 11 Temperature and stream function for nonsquare enclosure by the 
penalty-finite element model (a) temperature and (b) stream function 
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Elects of Natural Confection in the 
Melted Region Around a Heated 
Horizontal Cylinder 
Two heat transfer modes are involved in the process of melting around a heated horizontal 
cylinder: conduction and convection. The magnitude of convection is proportional to the 
Rayleigh number based on the width of the melted region. The importance of natural con
vection increases with time. For a short period after the beginning of melting, heat trans
fer is dominated by conduction. A regular perturbation solution is presented to demon
strate the increasing effect of natural convection on the melting process. 

1 I n t r o d u c t i o n 
Phase-change problems such as melting and freezing have been 

extensively studied for the last century due to their wide applications. 
A comprehensive review of previous works concerning the natural 
convection effect can be found in [1-2]. Recently, the development 
of thermal storage systems require further study of the problem. The 
thermal storage systems usually contain horizontal pipes through 
which a hot fluid flows. The thermal energy is transferred from the 
pipes to the surrounding thermal storage materials and stored there. 
It is desirable to select thermal storage materials of low melting 
temperature to take advantage of their large latent heat during the 
process of changing phase. Currently, the available latent heat systems 
employ a containerized PCM-a la the thermal 81 tubes. In this paper, 
we concentrate on the natural-convection effects on the melting 
process for a single tube. With the improved knowledge about the 
effects of natural convection, the response time of the system may be 
improved by altering the design. 

An idealized model to simulate the thermal storage unit consists 
of a hot horizontal cylinder embedded in an infinite solid. Tradi
tionally, the phase-change problem in this kind of geometry is solved 
with the assumption that the energy is transferred by conduction 
alone. Therefore, the melting front is axisymmetric and the analysis 
can be simplified to problems of one-dimensional and unsteady 
conduction. However, two recent experiments [1,2] clearly show that 
the melting front is by no means axisymmetric. It propagates faster 
upward than downward. Natural convection plays an increasingly 
important role in the process of transferring energy. The effects of 
natural convection on the phase-change process is the topic studied 
in the paper. 

The difficulty associated with the phase-change problems is that 
the boundary between two phases moves and is not known a priori. 
A gap function is introduced to immobilize the melting front in the 
transformed coordinate. The domain of the melted region becomes 
a unit circle. This removes the complication of an asymmetric moving 
boundary. The effects of the moving boundary are modeled into the 
governing equations whose forms, although manageable, become 
rather complicated. 

The general formulation of the mathematical model is presented 
in the second section. It is demonstrated that the importance of the 
natural convection depends on the Rayleigh number evaluated on the 
characteristic width of the melted region. At the beginning of the 
melting process, conduction is the dominant energy transfer mode. 
The importance of natural convection gradually increases as the 
melted region grows. Eventually, the natural convection develops into 
a turbulent motion. In this paper, we concentrate on the short-time 
solution where conduction is the dominant energy transfer mode, and 
natural convection is treated as a perturbed quantity. 

The regular perturbation series are developed in the second section 
and the solutions are outlined in Section 3. In Section 4 the numerical 
results are presented and discussed. 

2 Analysis 
The physical model considered is an infinitely long circular cylinder 

of radius o horizontally embedded in an infinite solid material (Fig. 
1). The temperature of the solid is held at the melting temperature, 
Tm, originally. The surface temperature of the hot cylinder is kept 
at a constant temperature, say T; > Tm, when the melting begins. The 
position of the melting front is denoted by R(\p,t) which is not axi
symmetric due to natural convection. The variation of density through 
phase change which is the most commonly adopted assumption in the 
theoretical study of phase-change problems is not considered here. 
The buoyancy force induced by the density stratification is, however, 
included by using what is known as the Boussinesq approximation. 

The equations governing the stream function and the temperature 
in cylindrical polar coordinates are 

^=(v*7) + - ; 
dt r 

: v 2 / ) = fig 
. , i>T , cos \f/ dT 

sin y + 
dr r o\p 

+ j / V 2 / 

(la) 

~+-J(df,T) = a\/2T 
dt r 

(lb) 

where r and \j/ denote the radial and the azimuthal coordinates, t is 
the time, v is the kinematic viscosity, a is the thermal diffusivity, /3 
is the thermal expansion coefficient, and g is the gravitational accel
eration. T represents temperature and / is the stream function which 
is related to the velocities by 

IK. a/ 
dr 

(2) 

where u is the radial velocity and v is the azimuthal velocity. Y2 is the 
Laplace operator in cylindrical polar coordinates and is 
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„ , a2 ie» i a2 

dr2 f dr r2 d'ft2 

and J is the Jacobian defined as 

or ay/ dy or 

(3a) 

(36) 

The moving melting front presents some difficulties in the analysis 
of the melting problem. A dimensionless gap width of the melted 
liquid, 

B(P, t) = [Rty, t) - a]/a, (4) 

is introduced. With the help of equation (4), the dimensionless vari
ables are introduced. 

/ = f/a (stream function), (5a) 

r - [(/ — a)/(aB)J (radial-coordinate transformation) (56) 

(5c) t = t/(a2/at) (time) 

e = C(Tt - Tm)/L —) (Stefan number) (5d) 

d = (T~ Tm)/(Ti - Tm) (temperature) (5e) 

where C is the specific heat and L is the latent heat. 
Substitution of equations (5) into equations (1) give the dimen

sionless governing equations. They are 

\ot B or) r+ l/B 
Pr- cB- • Ht, vi*n 

Ra 
. , dd cos J/ 

sin 1̂  1 

£ • 5 . 
dd 

ot 

dr r + l /B \o\p 

rBd01 

U B dr] 
1 

B drj r+ l/B 

+ 5 • V14/, 

J(f,d)=B.V1*f, 

where 

Ra 

Pr = via (Prandtl number) 

Pg(Ti - Tm)a*. 

V l
2 = — 

1 B2 

and 

J(/,V!2/) = i 

ii 

dr2 

d r ' 

1 

-(Rayleigh number) 

1 / d rB'o\2 

r + l/B dr (r + l /B) 2 ldi/< B drj . 

(6a) 

(66) 

(7a) 

(76) 

(7c) 

r&d\ 

B or) 
(V12/) 

~~(Vi2f) 
dr 

.tJL-'jr±U 
\df B dr) J 

(7d) 

In equations (6) and (7), the superscripted dot denotes the derivative 
with respect to t, and the prime with respect to $. The terms which 
contain B represent the convection due to the moving melting front; 
B' introduces the convective effects due to the asymmetric develop
ment of the melting front. It should be pointed out that the radial-
coordinate transformation, equation (56), immobilizes the moving 
boundary and transforms the undetermined asymmetric geometry 
into a unit circle. The convective effects introduced by the moving 
boundary are modeled into the governing equations. A similar 
transformation [4] has been used to study the natural convection in 

the melted region around a heated vertical cylinder. A time-depen
dence of the melting front has been dismissed from the transforma
tion. This results in a simpler set of the governing equations which 
is suitable for small Stefan numbers. 

Equation (6) shows that the buoyancy forces are proportional to 
Ra which is evaluated at the radius of the inner cylinder. However, 
equations (7) show that V12/ ~ l /B 2 and J ~ l/B3 . This indicates that 
the magnitude of buoyancy forces are actually depending on Ras = 
Ra • B3 . In other words, the importance of the natural convection in
creases with the amount of the melted liquid. Since the value of B is 
small at the beginning of the melting process, conduction is the 
dominant heat transfer mode. As the melting front propagates, the 
natural convection gradually becomes the dominant heat transfer 
mode. Eventually, the natural convection develops into a turbulent 
motion. 

In this paper, we concentrate on the short-time solution where 
natural convection is weak and can be treated as a perturbed quantity 
and conduction is the dominant heat transfer mode. Also, we assume 
that the Stefan number is small. This is a desirable characteristic in 
selecting thermal storage materials. For small Stefan numbers, the 
melting front moves slowly and a quasi-steady approximation can be 
justified. With these two assumptions in mind, the regular pertur
bation series can be expressed 

0 = [0oo + «0Oi + • • • ] + R a c o s W i o + «0n + •••] 
+ Ra2 cos 2^[02o + e02i + . . . ] + . . . , (9a) 

/ = Ra sin ip\fw + efn + ...] 

+ Ra2 sin 2^(/2o + e/21 + . . . ) + . . . (9b) 

where all the expansion functions depend only on r. Since the asym
metry of the melted region is determined by the asymmetric distri
bution of heat flux induced by natural convection, the gap width can 
also be expanded into a power series of Ra and e, such as 

B = Boo + e • B01 + . . . ] + Ra • cos • i/*[Bi0 + e • B u + . . . ] 

+ Ra2 • cos (2i/-)[B20 + «• B 2 i + . . . ] + . . . , (9c) 

where all the Bs depend only on t. It should be emphasized here that 
the perturbation series are not limited by the value of Ra; instead, they 
are limited by the value of Ra • B3. Therefore, the value of Ra only 
partially determines how long the perturbation series are valid since 
the value of B increases with time. The upper limit of Ra • B 3 for which 
the series solution can be applied will be discussed in the last sec
tion. 

The governing equations of 0's and / ' s can be obtained by substi
tuting equations (9) into equations (6) and collecting the terms of 
equal order e and Ra. They are listed below. 
Ra°: 

a20Oi ^ 
e: —— + 

dr2 

Ra: 

-„. a^oo 
dr2 

1 5floi 

r + l/Boo' dr 

r • B00B00 + 

1 dda 

r + l/Boo dr 
= 0 

B01 

( 1 + B o o - r ) 2 

d0oo 

dr 
+ Boo • Bo 

(a0oo 

dBoo 

(10) 

(11) 

•Nomenclature.. 
A; = constants 
a ~ radius of the hot cylinder 
B = gap function, equation (4) 
/ = stream function 
g - gravitational acceleration 
k = thermal conductivity 
Pr = Prandtl number 
r = radial coordinate 
R — contour of the melted region 
Ra = Rayleigh number 

Ra B = Ra-B3 

T = temperature 
0 = dimensionless temperature, equation 

(he) 

v = kinematic viscosity 
a = thermal diffusivity 
/3 = thermal expansion coefficient 
\f/ = azimuthal coordinate 
p = density 

Superscr ip ts 

- = dimensional quantity 
' = derivative with respect to \p 
• = derivative with respect to t 

Subscripts 

i = inner cylinder 
m - melting front 
number = indication of the expansion 

order 
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dr 
(12a) 

rr 2/1 - lBl° • f™ \ d^°° MOM 
V2

20io= — + - — ) • — < (126) 
\Boo 1 + Boo-r dr 

where 

+ 0.25 • (r + 1/B<x>)2 - (1 + 1/Boo) • (r + 1/Boo) 

A2 = [Coi(O) - C0i(l)]/ln(l + Boo) 

A3 = A2 • InBoo - oi(0) 

(23a) 

(236) 

(23c) 

V22 a2 Ra: 

(13) 
dr2 r + l/Boo dr (x + 1/Boo)2 

The higher-order equations can be obtained similarly; however, the 
complexity increases very fast. 

Equations (10-14) depend on B's. In the process of solving equa
tions (10-13), the gap functions Boo, Boit Bi0 , etc., have to be deter
mined in order to complete the solution. The equations governing the 
gap functions can be obtained from the principle of energy conser
vation along the melting front, the boundary between two phases. It 

e°: ho = Ax • Boo | ~ • (r + 1/Boo)3 . [ln(r + 1/Boo) - 1.25 + A4] 

+ 0.25 • A5 • (r + 1/Boo) • 2 • ln(r + 1/Boo) - 1] 

+ A6 • (r + 1/Boo) + ~ } (24) 

r + 1/BooJ 

0io= -
„ _ Ai Bio • (1 + Boo) 

Bo 4 + iU 
-fe,(dT/dr)?-fl = pMdRldt), (14) 

where k is the thermal conductivity and p is the density. The sub
scripts / and s distinguish the liquid and the solid phases. In terms 
of the dimensionless variables, equations (14) become 

+ 1 2 - + C10(r) (25) 
1 

r + 

where 

(dBVdt) = -2(d0/dr) r = . i (15) 

Substitution of equation (9c) into equation (15) and collection of 
the terms of equal order e and Ra result in 

R a ° ' - 50oo 
t°:BooBoo = ~~~ 

dr r - i 

Ra: 

«: BooBo 

<°:Boo*io : 

30oi , BQI d0po 

dr Boo dr , 

d0io Bio d0po 

dr Boo dr Jr*-i 

(16) 

(17) 

Cio(r) = Ai2 • Boo2 • { — • ( ' • + 1/Boo)3 • [Mr + 1/Boo) - 2 + A4] 

+ - • As • (r + l/Boo)[ln2(r + 1/Boo) - 21ra(r + 1/Boo) + 1] 

+ - • A8 • (r + 1/Boo) [21n(r + 1/Boo) - 1] - 0.5A7] 

• ln(r + l/Boo)/(r + 1/Boo) , (26a) 

and 

(18) 

3 S o l u t i o n 
The boundary conditions required to solve the above equations 

are 

(1) r = 0: 0 = 1, (constant temperature) (19a) 

/ = (d//dr) = 0, (no-slip condition) (196) 

(2) r = 1: 0 = 0, (melting temperature) (19c) 

/ = (d//dr) = 0 (19d) 

The initial condition for the melting front is 

t = 0, B = 0. (20) 

Physically, equation (20) can be interpreted to imply that no liquid 
region exists before the surface temperature of the inner cylinder is 
suddenly raised from 0 - 0 to 0 = 1. 

The solutions of equations (10-12) which satisfy the conditions 
(19-20) are listed below. 
Ra°: 

e°: 0oo = 1 ~ Ai • ln(l + Boo • r), 

where 

where 

Coi(r) 

Ai 

c. 0oi = A2 • In [r + 

Ai -Boi 

l / ln(l + Boo) 

1 

BOOJ 
+ A3 + Coi(r) 

(21a) 

(216) 

(22) 

Boo2(r + 1/Boo) 

+ Ai 2 BBoo 3 0.25 . A t • Boo2 • - * ^ . f " ^ • pnt t + Boo • r) - 1} 
1 + Boo 

A„ = (1 + In Boo) ~ [4 • A5 • Boo2(l + Boo)2]/Aio, 

A5 = (A8 • A9 - 4 • (1 + Boo)2 • [A9 - Aio • (1 + Boo)2] 

• ln(l + Boo)!/{16 • Boo2 • [A9 • ln(l 4- Boo) - A?0]}, 

A^m-r- + TL- M l + soo) + Aio - In Boo], 
Aio Aw 

A7 = (A5 • A8 • Aio ~ A£)/[A9 • ln(l + Boo)], (26b) 

A8 = 0.25 • (1 + Boo)2 • In (1 + Boo)]/Boo2 

A9 = ( l + B o o ) 4 - l , 

Am = ( 1 + B o o ) 2 - 1 , 

A n = ~ 2 [BioAi - (1 + Boo)Cio(l) + do(0)] 
Aio 

A i 2 = ~ ~ [BioAi + Cio(l) - (1 + Boo)Cio(O)] 
BooAio 

The solutions of higher orders can be obtained by following a similar 
procedure. The extension is straight-forward; however, the algebra 
becomes very complex and tedious. The computer method may be the 
appropriate approach to obtain the series. It should, however, be re
membered that the expansion procedure is restricted to small Ray-
leigh numbers and Stefan numbers. Inclusion of the terms of higher 
orders may be able to extend the applicable domain of the series so
lution; but the extended series are still limited by the method of so
lution. For the longtime solution, large Raa, a direct numerical so
lution may be more appropriate. Therefore, only the solutions up to 
the first-order of € or Ra are presented here. They are sufficient to 
predict the beginning process of the phase change in thermal storage 
where neither an experimental measurement nor a numerical solution 
can easily achieve the desirable accuracy. 

Equations (23-26) show that the solution is independent of the 
Prandtl number, at least up to the first order of t and Ra. It should, 
however, be noticed that the selected scalings, equations (5), which 

Journal of Heal Transfer NOVEMBER 1980, VOL. 102 / 68S 

Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



nondimensionalize the equations, implicitly impose a restriction on 
the Prandtl number. The formulation is for Prandtl numbers which 
are not too small. For very small Prandtl number such as liquid 
metals, the inertia forces, equation (6a), may not be small, and the 
diffusion may be controlled by the kinematic viscosity instead of the 
thermal diffusivity. The case of very small Prandtl number can be 
safely ruled out from the selection of material for thermal storage and 
is, therefore, not considered in this paper. 

The corresponding gap functions are 

4t = 1 + (1 + Boo)2[2 In (1 + Boo) - 1] 

Boi = exp C GitfmW ("G2(B00) Jo Jo 

X exp {' Gx(Bw)dt 
Jo 

dt 

Bio = exp 

exp 

f ' G1(B00)dt 
Jo 

- f (Gi(Boo)dt 
Jo 

pG3(Boo) 
Jo 

dt 

where 

Gi = (-l/Boo2)(d0oo/ar)|r = 1 

G2 = (-l/Boo)(a0oi/dr)|r = l 

G3 = (-l/JBoo)(d0io/ar)|r = l 

(27a) 

(27b) 

(27c) 

(28a) 

(286) 

(28c) 

Equations (276) and (27c) are at best, difficult to integrate 
closed-form therefore, they are numerically integrated. Their nu
merical values of B's are presented in the following section. 

4 R e s u l t s and D i s c u s s i o n 
The propagation of the melting front can be described from equa

tion (9c) after the values of Boo, Boi. Bio, etc., are calculated. Since 
the regular perturbation solution with the quasi-steady approximation 
is valid only for small Ra-B3 and e, we only present the solutions up 
to the first order of Ra or e. The values of Boo, Boi, and Bio are shown 
in Fig. 2. Boo represents the location of the melting front due to the 
heat conduction. The gradient of Boo with respect to time gradually 
levels off when the melting front moves away from the inner cylinder. 
Boi is the first-order unsteady effect. Its values are negative. This 
implies that the zeroth-order quasi-steady solution tends to over-
predict the propagation rate of the melting front. 

Bio is the first-order effect due to natural convection. Its values are 
also negative. Physically, Bio shows that natural convection sends a 
hot fluid upward along the surface of the hot cylinder. The liquid is 
cooled along the melting front and flows toward the bottom of the 
annulus region. Consequently, there is more solid being melted above 
the inner cylinder than below it. The gradient of Bio with respect to 
time increases with time. This shows that the effect of natural con
vection is unimportant at the beginning of the melting, even though 
in theory, natural convection exists as soon as some solid is melted. 
Its importance increases proportional to the third power of the width, 
B, of the melted region. At the beginning of the melting process, the 
magnitude of natural convection is too small to be measured accu
rately (see Bathelt, et al.). A comparison of the gradient of Boo and 
Bio with respect to time clearly shows the role that natural convection 
plays in the melting process. Since the gradient of Bio becomes steeper 
and that of Boo less steep as the size of the melted region grows, the 
natural convection eventually becomes the dominant heat transfer 
mode in the melting process. 

The valid range of the series solution depends on Ra^. For a larger 
Ra, the series solution can be applied up to a smaller B. The exact 
value of Raa for which the series solution may be applied can be de
termined from a numerical solution (longtime solution) which is, 
unfortunately, unavailable at present. However, the maximum value 
of RaB for which the melting front continuously propagates at ip -
0 can be easily obtained from the numerical values of the B's. For Ra 
= 500, the resolidification, which is physically unrealistic, starts about 

0.2 0.4 0.6 0.8 1,0 12. 1.4 Vo 

Fig. 2 Melting front 

Fig. 3 Streamlines In the asymmetric melted liquid region (c = 0.1, f • 
0.392) 

RaB = 2020. For Ra = 1000, it starts at 2165 and for Ra = 5000, it is 
2600. It can be concluded that the series solution becomes unrealistic 
about Ra-B3 = 2000. 

Two plots of the shape and the streamlines of the melted-liquid 
region are given in Fig. 3 for Ra = 500, and 5000, respectively. The case 
of larger Ra represents the higher temperature of the hot cylinder and 
results in a more eccentric melted-liquid region. It should be noted 
that the solutions of 0(Ra°) do not only represent the heat conduction 
in a concentric geometry. As soon as the actual shape of the melted-
liquid region is determined, a significant part of the conduction effect 
in the eccentric melted-liquid region is included in the solution of 
0(Ra°) through the transformation of radial coordinate, equation (56). 
This is similar to the case of heat transfer in eccentric annuli. A de
tailed discussion on the properties of that series solution, such as fast 
convergence with respect to the eccentric effect can be found in 
[3]. 

Three profiles of dimensionless radial velocity (\p = 0°), derived 
from equations (2a) and (24) are given in Fig. 4 for t = 0.45,1.04, and 
1.55. For example, the maximum \ua/a\ at t = 1.55 is 0.5 X 10~2. 
Similarly, the azimuthal velocity (f - 90°) is plotted in Fig. 5. 

The azimuthal shear, Tr(j„ can be derived from the stream function 
and is 

(a2/na)Tr+ = (l/B2)(d2/7dr2) = (Ra sin ^)/(Boo + «Boi 

+ Ra COS \p -Bio)/lO,rr ~H . . . (29) 
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0.2 9 * Di U U 

Fig. 4 Radial velocity (Ra = 500, ( = 0.1, and f = 0 deg) 

where \x is the viscosity of the melted liquid and the subscript denotes 
the derivative. The value of fio,rr along the surface of the inner cyl
inder, r = 0, and that of the outer cylinder, r - 1, can be calculated 
from equation (24). The shear along the surface of the inner cylinder 
is larger. 

Typical temperature distribution along yp = 0° C when Ra = 500 
and 0.1 is plotted in Pig. 6 for t = 0.392,1.04, and 1.55, respectively, 
the amplitude of the natural convection increases with time; the 
temperature profile becomes more curved. The surface temperature 
gradient increases along the lower half surface of the inner cylinder 
due to the ever increasing local impinging flow. On the contrary, the 
temperature gradient along the lower half of the melting front de
creases due to the local inverse stagnation point flow. This is the 
reason why the melting front propagates slower in the downward di
rection. The temperature distribution along \p = 180 deg is exactly 
opposite to that along ip = 0 deg. This is the reason why the melting 
front propagates faster upwardly. 

Heat transfer rate, q, can be estimated from the temperature dis
tribution, equations (9a, 23a, 24a), and (26a). It is 

0.2 ofi 0L6 as ID 
Fig. 6 Temperature distribution (Ha = S00, e = 0.1, and \p = 0 deg) 

Fig. 5 Azlmuthal velocity (Ra = 500, t = 0.1, and ̂  = 90 deg) 

m OS 

— Integral Solution 
— Quasi-steady Solution 

0 <-
0 

0.05 

Integral Solution 

Quasi-steady Solution 

05 

Fig. 7 Comparison of B predicted by the quasi-steady solution and the In- Fig. 8 Comparsion of fw„ predicted by the quasi-steady solution and the 
tegral solution integral solution 
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(q-a)l[k(Ti - Tm)] = - (l/B)(d0/dr) 

= - [6tM,r + (Ooi,r + R a COS \p 01O,r + • • • ] / 

X [Boo + «Boi + Ra cos i^Bio + . •.] (30) 

where k is the thermal conductivity of the melted liquid and the 
subscript, r, denotes the derivative with respect to r. The values of 
#oo,r, 6<n,r, and #io,r along the surfaces of the inner cylinder and the 
melted front can be easily evaluated from equations (21a, 22), and 
(25). 

The perturbation solution presented above is limited to small Raa 
and €. For a heat-conduction problem it has been proved that the 
quasi-steady approximation can provide a fairly accurate prediction 
when e is smaller than 0.1. Since there is no rigorous solution available 
to compare with, the upper limit that the quasi-steady solution can 
be applied cannot be determined now. However, the comparison of 
the quasi-steady solution with the approximate integral solution [5] 
seems to confirm that e = 0.1 is also the reasonable upper limit. Figure 
7 shows the predicted location of the melting front by two different 
approximate methods. The agreement for t < 0.5 is extremely satis
factory. The difference increases but is bounded by 5 percent up to 
t = 1. The comparison of hear stress, /io,rr is very well as shown in Fig. 
8. Since the integral solution is limited for small Ras's , no rigorous 
conclusion can be made on the limitation of Ra# for the regular per

turbation solution besides what has been discussed in the text. It is 
worthy to re-emphasize again the solution can only be applied before 
the natural convection becomes one of the dominant heat transfer 
modes. This is why the solution is labeled short-time solution. A direct 
numerical solution of equation (6) is needed if one is interested in the 
development of the melting porocess for a longer period where the 
natural convection becomes dominant. 
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Instability of the Planar Freeze Front 
During Solidification of an Aqueous 
Binary Solution 
A model describing the heat transfer, solute redistribution, and interface stability during 
the planar solidification of an aqueous binary solution has been developed. The tempera
ture field was calculated using a modified Kdrmdn-Pohlhausen integral technique. With 
this technique, the averaged heat conduction equation was solved with the full set of 
boundary conditions using an assumed spatial variation of the temperature profile. The 
concentration field was solved for analytically. The stability of the planar freezing mor
phology was determined using the Mullins-Sekerka stability criterion, in which the time 
variation of a sinusoidal perturbation of the planar interface was calculated. Application 
of this criterion to the freezing of saline indicates that for any practical freezing rate the 
planar interface was unstable. This represents an indictment of the planar freezing model 
and indicates the tendency for aqueous solutions to freeze dendritically. 

In troduc t ion 
For a quantitative understanding of the solidification of an impure 

aqueous solution, the solid-liquid interface morphology as well as the 
temperature and concentration fields must be determined. The planar 
interface has been the assumed morphology in many previous in
vestigations in this area because it represents the simplest possible 
interface morphology. However, the thermodynamic stability of this 
freezing geometry is an issue that has been completely ignored in most 
cases and implicitly assumed in others. If instability of the planar 
interface is indicated, the interface will experience a transition to a 
more complicated morphology, representing an indictment of the 
planar interface assumption. 

In this paper, the thermodynamic stability of the planar interface 
will be analyzed during the freezing of a slab of an aqueous binary 
solution. The Mullins-Sekerka stability criterion [1-3] will be used 
in this analysis to provide quantitative stability information as a 
function of the thermal and diffusional conditions imposed on the 
interface. Calculation of the required temperature and concentration 
profiles will be accomplished using the Karman-Pohlhausen integral 
technique [4,5]. The analysis will be applied to the freezing of an NaCl 
- H2O solution. 

T r a n s p o r t E q u a t i o n s and B o u n d a r y Condi t ions 
The planar freezing geometry is shown schematically in Fig. 1. Heat 

is extracted at constant flux rate from the plane at x - 0. The region 
0 < x < s is occupied by ice and the region s < x < £ is occupied by 
a liquid solution. The solid-liquid interface is located at x = s(t) and 
the plane x = £ is a plane of symmetry representing the center of a 
planar slab of thickness 2£. The field is infinite in extent in the vertical 
direction and in the direction normal to the paper. 

The differential equations of energy and mass transport have been 
derived repeatedly for this system [6,7], and are given by 

d2T; _ dTj 

dx dt 

and 

D-
d2C dC 

dx2 dt 

(1) 

(2) 

for heat and solute diffusion respectively, where j =s,£ refers to the 
solid and liquid regions. The mass transport equation may be more 
conveniently represented by transforming to a coordinate system that 
is moving with the solid-liquid interface. Using the transformation 

Rt (3) 

Contributed by the Heat Transfer Divison for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
October 31,1979. 

we can write equation (2) as 

d2C oC 
D—- + R •• 

dx z dx 

dC 

dt 
(4) 

where R is the pseudo-steady interface velocity. The coordinate x' 
is measured away from the interface, so at x' = 0, x = R -t = s(t). 

The boundary and initial conditions for the temperature and 
concentration fields are summarized in Table 1. In the freezing of most 
aqueous solutions, solute molecules are excluded completely from the 
advancing solid [8]. This condition is expressed mathematically by 
setting the absolute particle velocity to zero in the moving coordinate 
system to give 

D — (*' = o,t) + RC (*' = 
dx' 

o,t) = 0 (5) 

Since R, D and C are positive for all x', the concentration gradient 
must be negative at the interface. 

The temperature profiles described by equation (1) for/ = s,£ must 
match at the interface. Then 

Ts(x = s,t) = Te(x = s,t) = Ti. (6) 

If we assume that the solid phase and the liquid solution just adjacent 
to it are essentially in thermal equilibrium, the interface solute con
centration will determine the interface temperature from the locus 
of two-phase equilibrium states. This locus may be approximated by 
a power series of the form 

Ti = a' + b'Ci + c'Ci2 + d'Ci
: (7) 

The rate of advance of the solid-liquid interface is controlled by the 
removal of the latent heat of fusion. Conservation of energy applied 
to a control volume centered on the interface gives 

Ks—^ix' 
dx 

dTp 
s,t)-K£—^(x-

dx 
s,t) = psL 

ds 

dt 
(8) 

The left-hand side of equation (8) represents the net heat flux out of 
the control volume as calculated by the Fourier conduction law, which 
is equated to the rate of liberation of the heat of fusion. 

The entire freezing field is assumed to be initially in a state of 
uniform cooling. That is 

dT 
— (x,t = 0) = constant (9) 
dt 

Using this condition in equation (1) with j = £, we obtain 

H H 
Te{x,t = 0) = Ti(CB) • •x + -

Ke 2Ke£ 
(10) 

Equation (10) shows that an initially parabolic temperature distri-
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T a b l e 1 S u m m a r y of d i f f e r e n t i a l e q u a t i o n s , i n i t i a l a n d b o u n d a r y c o n d i t i o n s 

Solid Region Liquid Region 

heat transfer equations 

mass transfer equations 

boundary conditions 

d2Ts dTs 
as dx2 dt 

C = 0 

K,££i(x = o,t) = 
ox 

-H 

d2Te dT£ 
ae-alfl--oT 

dx' 2 ox1 dt 

dTe 

dx (x = e,t) = o 

TAx = s,t) = Ti(d) Te(x = s,t) = TACi) 

interface conditions K s ^ (x = s,t) - K £ ^ ( x = s,t) = psL^ 
ox Ox at 

D | £ (x' = o,t) + RC (x' = o,t) = 0 
dx 

TAd) = a' + b'Ct + c'd2 + d'Ct3 

dC 
dx 

'-, (x = £,t) = 0 

initial conditions 

T s ( x , t = 0 ) = T;(Co) 

s(t = o) = 0 

C(*',£ = o) = C0 

T^(x,t = o) = Ti(C0) -

H H 
Ke

 X + 2K££' 

bution exists in the field and is a function of the imposed heat flux and 
the initial freezing temperature. The quantity Ti(C0) represents the 
freezing temperature at the initial solute concentration. 

K a r m a n - P o h l h a u s e n H e a t B a l a n c e I n t e g r a l 
The heat conduction problem involving the change of phase of a 

binary alloy is nonlinear primarily because of the moving boundary 
condition and because of the interface temperature depression from 
the build-up of solute. One of the most useful techniques for solution 
of this type of problem is the heat balance integral developed origi
nally by Pohlhausen [4] and Karman [5] and modified by Goodman 
[9-11] and O'Callaghan [6], [12]. The method consists of assuming 
the spatial form of the temperature distribution (usually a power 
series) and solving an averaged form of the heat conduction equation, 
called the heat balance integral. The problem is reduced by this 
method to one of solving ordinary differential equations in time only. 
The assumed form of the temperature profiles is 

Ts = as + bsx + csx
2 

and 

Tf • + bex + C£X2. 

(11) 

(12) 

With the boundary conditions listed in Table 1, these expressions 
become 

Ts = Ti + 
H(s - x) 

• cAs2- x2) 

and 

Te = Ti + 2c££(s - x) - ce(s
2 - x2), 

(13) 

(14) 

where cs, ct and s are functions of time. 
Consider two control volumes, fixed with respect to the laboratory 

reference frame, one containing the solid and the other containing the 
liquid. Conservation of energy for the control volumes becomes 

Ks r"dTs(x,t) dT, 
H + Ks — - (x : 

dx 

-Ke 
dTe 

dx 

as Jo 

aeJs 

dt 

' dTe (x,t) 

dt 

-dx 

dx 

(15) 

(16) 

for the solid and liquid regions, respectively. These expressions rep
resent the averaged energy equations discussed above. Using equa
tions (13) and (14) in equations (15) and (16), we obtain after ma
nipulation 

- N o m e n c l a t u r e -

a = temperature constant (K) 
a' = constant in freezing point equation 

(K) 
b = linear temperature coefficient (K/m) 
b' = linear coefficient in freezing point 

equation (K — m3/mole) 
c = parabolic temperature coefficient (K/ 

m2) 
c' = quadratic coefficient in freezing point 

equation (K — m6/mole2) 
C = concentration (moles/m3) 
d' = cubic coefficient in freezing point 

equation (K — m9/mole3) 

D = diffusion coefficient of solute in solvent 
(m2/s) 

g = normalized thermal gradient at the in
terface (K/m) 

Gc = concentration gradient at the interface 
(mole/m4) 

H = heat flux at x = 0 (W/m2) 
K = thermal conductivity (W/m — K) 
£ = half width of slab (m) 
L = latent heat of fusion (N - m/kg) 
m = liquidus slope (K - m3/mole) 
R = interface speed (m/s) 

s = interface position (m) 
t = time (s) 
T = temperature (K) 
x = spatial coordinate (m) 
x' = moving spatial coordinate I 
a = thermal diffusivity (m2/s) 
p = density (g/m3) 

S u b s c r i p t s 
i - interface 
£ = liquid region 
o = initial condition 
s = solid region 
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dTt IHs Ads 2s3 dc, 
2a.c.s = s 1- 2css<= 

dt \KS )dt 3 dt -~ (n) 
and 

v ,* ,dTi ,„ ,ods 2(£-s)2dce 

2aece(£ ~s) = (£-s) — ' -+ 2ce(£ - s)2 - -
dt dt 3 dt 

(18) 

Finally, equations (13) and (14) are used in the moving boundary 
condition, equation (8), to obtain 

ds 
psL-r=-H+2Kscss + 2Kece(£-s) (19) 

dt 

These are three ordinary differential equations in the four unknowns 
c„ ce, s and T;. 

I n t e r f a c e C o n c e n t r a t i o n and T e m p e r a t u r e 
If we assume that the characteristic length of the concentration 

profile is much less than the length of the liquid region (£ — s), then 
the slope of the profile will decrease to zero far from the plane of 
symmetry (x = £). In this case the concentration boundary condition 
at x = £ listed in Table 1 will be equivalent to 

C — C0 as x' - for all t. (20) 

The reader should note that equation (20) is not valid as the liquid 
layer becomes small (i.e. as s -* £). However, it will be shown that the 
planar interface becomes unstable long before the liquid layer be
comes thin. 

Equation (4) together with equations (5) and (20) has been solved 
by Smith, et al. [13] by the LaPlace Transform method. The interface 
concentration is given by 

— — = erf ^ + 2iP(l + erf i//) + - ^ e~^ (21) 

, R ft 
where 4/ = — \ / —. 

2 V D 

Since equilibrium has been assumed between solid and liquid at 
the interface, the interface temperature may be specified by equation 
(7) using the interface concentration as expressed by equation (21). 
To obtain an expression for dTJdt, the chain rule is used to give 

dTj._dCj.dTi 

dt dt dCi 

Using equation (21) we have 

dTt CJi2 

(22) 

dt 2D V'VTT 
+ (1 +e r f i/<) \b'2c'Ci + Zd'd\ (23) 

Stab i l i ty of the P l a n a r I n t e r f a c e 
The original experimental study of the breakdown of a planar freeze 

front was done by Rutter and Chalmers [14]. They proposed a qual
itative criterion which predicted instability whenever growth condi
tions produced a layer of constitutionally supercooled liquid. This 
theory was subsequently quantified by Tiller, et al. [15]. Unfortu
nately, the theoretical basis for the constitutional supercooling cri
terion is uncertain. 

The recent theoretical analysis by Mullins and Sekerka [1-3] has 
become the definitive work on the stability of the planar interface. 
Their approach was to calculate the time dependence of the amplitude 
of a sinusoidal perturbation of infinitesimal initial amplitude intro
duced into the shape of the plane. Since an arbitrary infinitesimal 
perturbation may be reduced to sinusoidal Fourier components, and 
since all of the relevant equations are linear, the development of the 
perturbation is simply a superposition of the development of its 
components. Therefore, the interface is unstable if any sinusoidal 
wave grows and stable if none grows. 

For the case of aqueous binary solutions where solute is completely 
rejected from the solid phase, the Mullins-Sekerka stability criterion 
is given by 

where 

and 

(gt + gs) ~ mGc > 0 

g; = '-(x = s,t) 
1 K„ + Ke dx 

dC 
Gc - — (x' = 0) 

dx' 

dT{ 
m - — ' - = b ' + 2c'C; + Zd'Ci 

dCt 

(24) 

(25) 

(26) 

(27) 

The first term in the criterion arises from thermal gradients, is positive 
since ge, gs > 0 and thus favors stability. The second term, repre
senting the effect of solute accumulation on the equilibrium melting 
temperature is always negative since m and Gc always have the same 
sign, and favors instability. Overall instability of the interface occurs 
if there are any conditions for which the magnitude of the second term 
exceeds that of the first term, otherwise stability prevails. 

The temperature gradients in the liquid and the solid are given by 
equations (13) and (14) together with the results of the simulations 
of equations (17-19) and (23). Making these substitutions, we have 

: — 2css 
Ks +Ke\ X, 

and 

K, 
(-2c£(£-s)) 

(28) 

(29) 
Ks + Ke 

The concentration gradient is given by the interface boundary con
dition, equation (5), 

R 
Gc = -C, 

where C; is given in equation (21). 

(30) 

R e s u l t s and D i s c u s s i o n 
Equations (17-20) were simultaneously integrated using a fourth 

order Runge-Kutta integration routine to obtain cs, C£, s and T,- as 
functions of time. The physical properties used in the simulation are 
those of an aqueous sodium chloride solution and are listed in Table 
2. The free field concentration C0, was assumed to be 145 moles/m3 

while several values of heat flux at x = 0 were used ranging from —300 
to -15000 (W/m2). 

T a b l e 2 M a t e r i a l p r o p e r t i e s for sod ium c h l o r i d e -
w a t e r so lut ion 

Quantity 

density of solid 

density of liquid 

thermal conductivity of solid 

thermal conductivity of liquid 

thermal diffusivity of solid 

thermal diffusivity of liquid 

length of freezing field 

latent heat of fusion 

diffusion coefficient of NaCl in 
water 

Symbol 

Ps 

Pe 

Ks 

Ke 

a s 

Ot£ 

£ 

L 

D 

Value 

912 kg/m3 

998 kg/m3 

2.21 N ~ m 

s — m — K 

0.588 N - m , 
s — m — k 

1.26X10-6 — 
s 

0.133 X10- 6 — 
s 

5 X 10"3 m 

0.334 M n ~ m 

kg 

1.29X10-9 — 
s 
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Fig. 1 Planar freezing geometry with representative temperature and con
centration profiles 
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Fig. 2 Variation of the solid phase curvature parameter with time as a 
function of heat flux (W/m2) 

As shown by equations (11) and (12), cs and ce are the quadratic 
coefficients in the temperature profiles, and represent their spatial 
curvature. The coefficients also directly reflect the importance of 
thermal mass, since the profiles would have no curvature if the re
spective thermal mass, was zero. The dynamic variation of cs is shown 
in Fig. 2. When the solidification process has just begun, the curvature 
in the solid region temperature profile should be small since there is 
little thermal mass. The liberation of the latent heat of fusion at x = 
s requires a large heat flux in the solid and magnifies the importance 
of the growing thermal mass. 

The depression of the interface temperature with time is shown in 
Fig. 3. Initially, the interface temperature is relatively constant, re
flecting the slow rate of advance of the interface and the weak de
pendence of interface temperature on concentration at low solute 
levels. As the interface speed increases, the rate of solute build-up 
follows, and the dependence of interface temperature on concentra
tion becomes stronger. These effects together produce a very rapid 
depression of the interface temperature. The sharp rise in the cur
vature of the solid region temperature profile (see Fig. 2) is due to this 
depression of the interface temperature and to the growing effect of 
thermal mass. 

The liquid phase curvature parameter is plotted against time in Fig. 
4. The initial decrease is due to the "flattening" of the temperature 
profile in the unfrozen liquid. During this phase, the interface tem
perature is relatively constant and the thermal energy remaining in 
the liquid is rapidly being removed. As the interface temperature is 
depressed, the temperature curvature in the liquid must increase 
slightly to maintain zero temperature gradient at x - £. 

Interface position as a function of time is shown in Fig. 5. Except 
for a brief transient, the interface speed is constant, validating the 
pseudo-steady assumption made in solving the mass transfer problem. 
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Fig. 3 Interface temperature profiles as a function of heat flux (W/ms). The 
dotted lines Indicate the estimated extension of the curves beyond the sim
ulation time. 
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Fig. 4 Variation of liquid phase curvature parameter with time as a function 
of heat flux (W/m3) 

By far, the largest thermal load in the system is the liberation of the 
latent heat of fusion, so that sensible temperature changes in either 
the solid or the liquid region are energetically negligible. 

The Mullins-Sekerka stability criterion may be evaluated by sub
stituting the numerical values of c„, C(, and s into equation (24) to
gether with equations (7,13) and (28-30). The results are plotted in 
Fig. 6. Since the interface initially has zero velocity, equations (23) 
and (30) indicate that it is also stable. However, when an appreciable 
interface velocity is attained, the stability function exceeds zero in
dicating that the planar interface is unstable. 

Experiments on transparent organic liquids [16] show that as a 
planar interface becomes unstable, it initially becomes gently undu-
latory, as illustrated in Fig. 7. These perturbations or bumps are ex
posed to constitutionally supercooled liquid and tend to grow faster 
than the basal plane. The accelerated growth liberates additional heat 
which decreases the supercooling. Growth of the perturbations will 
continue until the supercooling has entirely vanished, resulting in 
stable, fully developed dendrites. 

Conclusions 
The stability of the planar freezing geometry was found to depend 

on the rate of freezing and the transport and thermodynamic prop
erties of the particular solute under consideration. 

The primary destabilizing factor in freezing aqueous systems is the 
complete rejection of solute from the solid phase, which produces a 
severe concentration gradient at the interface. Metals which form 
alloy solids exhibit a similar phenomenon; but the effect is less im
portant since solute is incorporated into the solid material. Enhanced 
diffusion of the solute away from the interface would delay the onset 
of instability, but the maximum effect of this enhancement is limited. 
The stability analysis presented in this paper represents a "most 
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Fig. 5 Nondimenslonal Interface position as a function of time 

stable" aqueous system since the NaCl — HsO diffusion coefficient 
is very large. Using a solute with a lower diffusion coefficient would 
make the interface substantially less stable. 

The depression of the freezing temperature at the interface in
creases the heat flux in the liquid and therefore represents a stabilizing 
influence. A solute with a more severe freezing point depression curve 
would tend to have more stable planar morphology. However, from 
the severe instability shown in Fig. 6, it may be concluded that the 
effect of freezing point depression is negligible compared to the 
build-up of solute at the interface. 
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Heat Transfer of Laminar l i s t Flow 
in Tubes 
Convective heat transfer of laminar mist flow is analyzed for constant wall temperature 
and constant heat flux conditions, respectively. The diminishing of droplet size, the in
creasing of vapor velocity, and the dilution of droplet density along the tube are consid
ered in the present study. Calculations are performed from the inlet of thermal entrance 
region to the final fully developed single phase flow of vapor at the far downstream. Non-
dimensional parameters influencing mist flow heat transfer are revealed and discussed. 
Fundamental heat transfer behavior of mist flow is studied and the results appear as an 
extension of our present understanding of single phase flow heat transfer. 

Introduction 
The heat transfer of single phase flow in tubes has been studied 

extensively [1]. However, the heat transfer of droplet flow in tubes 
has not been analyzed adequately in the past due to its complicated 
nature. Droplet flow heat transfer usually occurs at high void fraction 
and finds wide application in process and energy industries. The vapor 
is superheated by the hot wall; however, the droplets are generally at 
the saturation condition. Since the two phase mixture is at thermally 
nonequilibrium state, the droplets evaporate and generate saturated 
vapor into the stream. 

Limited analytical work has been performed for droplet flow heat 
transfer. Since the void fraction of droplet flow is high, a general ap
proach was proposed to consider the vapor phase energy balance by 
regarding the effect of droplets as equivalent heat sink distributed 
in the vapor. Sun, et al. [2], calculated fully developed laminar droplet 
flow heat transfer by assuming a zero axial temperature gradient of 
the vapor. Dix and Andersen [3] further analyzed this result for par
abolic velocity profile. The application of these fully developed heat 
transfer results to the entire length of tube is questionable, because 
the behavior of entrance region is unknown for droplet flow. There
fore, Yao [4] investigated the convective heat transfer of laminar 
droplet flow in thermal entrance region of circular tubes considering 
constant droplet number density and constant droplet size near the 
tube entrance. 

In the special case of low pressure systems, the vapor density is 
much lower than the liquid density and the latent heat of evaporation 
is very high. The evaporation of droplets will generate vapor but with 
insignificant change in droplet size. Therefore, the heat sink effect 
of the droplets declines along the tube length mainly due to the 
dilution of droplet number density. This problem of laminar droplet 
flow heat transfer in tubes at low system pressure with constant 
droplet size and varying droplet number density has been studied by 
Rane and Yao [5]. 

At high system pressures, or in a very long heated tube, the droplet 
size will diminish substantially in the tube. Eventually all the droplets 
evaporate and disappear from the stream. Therefore, the droplet flow 
heat transfer becomes an extrance problem with the fully developed 
heat transfer equal to that of pure vapor flow, where all the droplets 
evaporate completely. The diminishing of droplet size is especially 
pronounced if a mist flow is considered because of the large surface-
to-volume ratio of the very small droplets. The objective of this paper 
is to study the heat transfer behavior of laminar flow at these kinds 
of realistic conditions. 

Model 
In droplet flow, heat transfer occurs between wall and vapor, wall 

and droplet, vapor and droplet, in addition to the thermal radiation. 
In this study, post dry-out condition is analyzed, where the wall 
temperature is higher than the Leidenfrost temperature of the 
droplets. It is generally known that at pool film boiling, the conductive 

heat transfer between the liquid and wall is insignificant as compared 
to the vapor convective heat transfer [6]. More specifically, McCanthy 
(Kendall) [7] observed that the droplet-wall contact heat transfer is 
negligible when the wall temperature is above the Leidenfrost tem
perature. Therefore, the direct conductive heat transfer during wall 
and droplet contacts can be neglected in this study. 

For many liquids, the Leidenfrost temperature is not very high so 
that the contribution of thermal radiation can be neglected at the post 
dry-out conditions. Using an order of magnitude analysis [4], the 
radiative heat transfer can be neglected with respect to the convective 
heat transfer if 

ro(Tw - T.) 

2e£a(Tw* - Ts
4) 

» 1 (1) 
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By neglecting the droplet-wall contact heat transfer and the thermal 
radiation, only the wall to vapor and vapor to droplet heat transfer 
will be considered in the analysis. 

For simplicity, at the inlet of thermal entrance, all the droplets are 
assumed to have the same size. At laminar flow, droplets may move 
radially due to the presence of radial temperature or velocity gradients 
[8]. A droplet will be pushed away from the wall due to its nonuniform 
evaporation near the wall. A rotating droplet will move either toward 
or away from the wall depending on the relative velocity between the 
droplet and surrounding vapor. These radial mixings make each 
droplet evaporate at approximately the same rate. Therefore, the size 
of droplets is uniform at any tube cross section but varies along the 
tube. 

In this paper, the thermal entrance heat transfer of droplet flow 
is studied. It is known that the vapor velocity profiles are parabolic 
at both the inlet of this region and at its fully developed condition of 
single phase flow where all droplets evaporate completely. At the 
middle part of thermal entrance the vapor velocity may deviate from 
parabolic profile with a steeper gradient at the hot wall due to the 
stronger evaporation of droplets locally. In order to justify the as
sumption of parabolic velocity profile for the whole region, a calcu
lation was performed for comparison by using a bi-linear velocity 
profile with the gradient at the wall twice the value of the parabolic 
profile. The result of this comparison shows local heat transfer at the 
middle part of the thermal entrance with only 7 percent difference. 
Therefore it was decided that detailed calculation using coupled mass, 
momentum, and energy equations considering refined local velocity 
profiles will not be performed in the present study. 

Additional conditions can be assumed to further simplify the model. 
As discussed in reference [9], when the flow quality is higher than 0.5, 
the momentum of small droplets gives negligible influence to the 
vapor velocity profile. When the chemical composition of the vapor 
and the droplet are identical, mass transfer due to concentration 
difference does not occur. When droplet size is assumed to be small, 
for example considering the mist, the drag of vapor dominates the 
motion of the droplets. As shown in the Appendix, the heat transfer 
between a droplet and vapor will be determined by conduction due 
to the low droplet Reynolds number at this condition. 
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Practically, the vapor temperature increases along the tube, 
therefore, the vapor properties vary along the stream. The gas heat 
transfer at laminar thermal entrance with variation of physical 
properties has been studied by Worsoe-Schmidt and Leppert [10] for 
constant wall flux and constant wall temperature conditions using 
implicit finite difference scheme. Slight variations of Nusselt numbers 
from the result of constant-property condition are observed; however, 
the difference is much less in magnitude than the variation of mist 
flow Nusselt numbers due to droplet heat sink effect, as illustrated 
in the later part of this paper. Therefore, constant vapor properties 
is assumed in this study as a first approach. 

In summary, the important assumptions used in the present anal
ysis are 

1 negligible droplet-wall contact heat transfer 
2 negligible thermal radiative heat transfer, 
3 uniform droplet size at tube inlet, droplet size varying axi-

ally, 
4 high flow quality (>0.5), constant fluid properties, and parabolic 

velocity profile, and 
5 conductive heat transfer between vapor and the small drop

lets. 
The schematic of droplet flow heat transfer is shown in Fig. 1. 

Studies have been performed for the droplet flow heat transfer with 
abundant experimental data available. However, most of these ex
periments did not report important information in detail such that 
these data can not be used to validate our analysis. For example, the 
droplet size spectrum is seldom measured. Some studies contain 
droplet size information [11,12]; but these tests are for turbulent flow. 
As a result, there is no appropriate experimental data on laminar 
droplet flow heat transfer which is complete enough for us to compare 
with the results of the present analysis. 

F o r m u l a t i o n 
The presence of droplets in the superheated vapor behave as heat 

sinks. Heat is transferred from the superheated vapor to the saturated 
droplets, and the subsequently generated vapor is heated up to the 
vapor stream temperature. The equivalent heat sink per unit volume 
becomes 

mrd*hd(T - Ts) + mrd*hd(T - TS)CP(T - Ts)/hfg (2) 

where the hd is the heat transfer coefficient from superheated vapor 
to a saturated droplet. It has been reported that the evaporation at 
the droplet surface will reduce the heat transfer coefficient as com
pared to an equivalent nonevaporating droplet or solid sphere [13]. 
The relationship is 

j 
d = Constant 
n= n ( X ) 
V= V(X) 

r \ - Constant OF 
"—x / q„= Constant 

j 
/£&\ I 
x \ - Fluid and 

X=0 Evaporating Droplets 

Fig. 1 Schematic of mist flow heat transfer in tubes 

hd = hp/(l + Cp(T-Ts)/hfs) (3) 

where hp is the heat trasnfer coefficient of a solid sphere which is not 
at evaporating condition. Combining (2) and (3) the heat sink term 
can be represented in a simple form as 

mrd*hp(T-Ts: (4) 

In this study, the heat transfer in thermal entrance region of a tube 
is considered. With the heat sink described in equation (4) and the 
parabolic velocity profile, the energy equation for the vapor phase can 
be written as 

2pDCpV 1 
•\2\dT k 

il I dx r 

The initial condition and boundary conditions are 

T = Ts at x = 0 

d T 

dr 
- = 0 at r = 0 

nird2hp(T-Ts) (5) 

(6) 

(7) 

and 

T = T „ , a t r = r0 

for constant wall temperature condition, or 

• quiatr 
br 

ro 

(8) 

(9) 

for constant wall heat flux condition. In this equation the mean vapor 
velocity V will vary along the stream due to the vapor generation from 
droplets. 

. N o m e n c l a t u r e -

A = liquid loading parameter, defined in 
equation (34) 

C = wall superheat parameter defined in 
equations (36, 37) 

Cp = specific heat of vapor 
do = droplet diameter at thermal entrance 
d = droplet diameter or differential nota

tion 
D = nondimensional droplet parameter, de

fined in equation (19) 
Fr = Fraude number defined in equation 

(A-14) 
hfg = latent heat of evaporation 
hd = heat transfer coefficient for evaporating 

droplets defined in equation (3) 
hp = heat transfer coefficient of nonevapor

ating droplet or sphere 
k = thermal conductivity of vapor 
n = droplet number density 
no = droplet number density at thermal en

trance 
Nu* = local Nusselt number defined by 

equations (40, 41) 
Pr = Prandtl number of vapor 
qw = heat flux at the wall 
R = nondimensional radial position (r/ro) 
Re = Reynolds number for vapor based on 

tube diameter and mean vapor velocity at 
thermal entrance 

Red = droplet Reynolds number based on 
droplet size and its velocity relative to 
vapor 

Re' = Reynolds number defined in equation 
(A-13) 

r = radial position 
ro = radius of circular tube 
S = heat sink parameter defined in equation 

(35) 
t = time 
T = temperature of vapor 
Tm - bulk mean temperature of vapor 
Ts = saturation temperature 
Tw = wall temperature 
U = mean droplet velocity 

V = mean vapor velocity 
Vo = mean vapor velocity at the inlet of 

thermal entrance 
x = axial position in thermal entrance re

gion 
X = nondimensional axial position 
6 = nondimensional vapor temperature 
6m = nondimensional bulk mean tempera

ture 
te = droplet emissivity 
a = Stefan-Boltzmann Constant for thermal 

radiation 
pe = liquid density 
pv = vapor density 
X = the parameter defined in equation (A-

10) 
JX = dynamic viscosity of vapor 
/3 = reciprocal time constant defined in 

equation (A-5) 
«o = void fraction of vapor at thermal en

trance 
v = kinematic viscosity of vapor 
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At steady-state, the number of droplets passing through any tube 
cross-section is equal to the value at the tube inlet. Hence, the local 
mean vapor velocity can be related to the local droplet number density 
by assuming same velocity for droplets and vapor. That gives 

Vn = V0n0 (10) 

The variation of droplet number density can be related to the 
change of droplet size as 

p£mrd2-dd = —pu— 

with the initial condition 

dn 
~Pv — 

n 

• no when d = do 

(11) 

(12) 

(13) 

at the inlet of tube. Therefore the droplet density is presented in terms 
of droplet size as 

1 = J_ £ 
n no 6 

o3 - d»l (14) 

Finally, the change of droplet size can be related to the evaporation 
of the droplet by assuming the droplets travel at the same velocity as 
the vapor. That is 

ird*hd(Tm - Ts) •• 
2 ,g dt 

1 U J2ddV 
•-pehfgird2—V 
2 dx 

with the initial condition 

d = do at x = 0 

(15) 

(16) 

(17) 

where Tm is used for the heat transfer to an averaged droplet. Ap
proximation was made here that the droplet velocity is very close to 
the vapor velocity when droplets are small. The bulk mean temper
ature is defined as 

T»-^rr(i-(3V (i8) 

With equations (10,14) and (16), equation (5) is able to consider the 
variations of mean vapor velocity and droplet density along the tube 
length. This set of equations can be nondimensionalized and pre
sented in terms of 

D = (d/do) 

R = (r/r0) 

X = (x/r0)/(Re Pr), and 

fl = ( T - T . ) / ( T „ - T . ) 

for constant wall temperature condition, or 

0 = k(T - Ts)/(qwro) 

for constant wall heat flux condition, 
where 

Re = 2pvV0ro/ix 

and 

Pr = fiCplk. 

The resulting energy equation for vapor is 

dd I d 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

[l + A ( l - D 3 ) ] [ l - f l 2 ] 
dX RdR\ dR, 

D 

(1 + A ( 1 - D 3 ) 
8 (26) 

dR 

•• 0 at X = 0 

= 0 at R = 0 

and 

8 = 1 (constant Tw) at R = 1 

i>8 
— = 1 (constant qw) at R = 1 
dR 

(27) 

(28) 

(29) 

(30) 

where the nondimensional droplet size D is determined from equa
tions (16) and (3) 

D(l + A(l-D3))— = 
dX 

2S 
(31) 

3 A [C-1 + 

with initial condition 

D = 1 at X = 0 

The bulk mean temperature of vapor is defined as 

0m = 4 Cd(l~R2)RdR 

In these governing equations, three important nondimensional 
parameters which influence the mist flow heat transfer are identified. 
They are the liquid loading parameter 

(32) 

(33) 

A = - (n0do3) — 
6 pD 

(34) 

the heat sink parameter 

S = noird0
2hporo2/k (35) 

and the wall superheat parameter which is 

C = CP(TW - T,)/hfg (36) 

for constant wall temperature conditions, and 

C = Cpqwr0/khfg (37) 

for constant wall heat flux conditions. All these parameters are based 
upon the inlet condition of the mist flow. 

C a l c u l a t i o n s 
Finite difference method is used to solve equations (26-33) nu

merically. Marching technique is employed with a modified form of 
semi-implicite method. Gauss elimination method is used to solve the 
matrix. All the variables are in double precision to reduce truncation 
error. Axial increment of X is set to 0.0001. The radial increment of 
R is selected as 0.025. The local Nusselt number obtained from single 
phase calculations (i.e., S = 0.00) are compared with the solution of 
Graetz problem [14] with satisfactory agreement showing the differ
ence within 0.5 percent in all the range of study. 

R e s u l t s and D i s c u s s i o n 
The liquid loading parameter A can be related to the local void 

fraction of the two phase flow as 

A = — (1 - a) 
Pu 

(38) 

With this, the heat sink parameter S can be arranged in the form 
of 

S = 6A (39) 

with initial and boundary conditions 

IPu\ I KM I I 

\pj\ k IWJ 
where the hpd0/k is the droplet Nusselt number with respect to the 
vapor. In mist flow this Nusselt number is close to 2.0 as shown in the 
Appendix. Therefore, for a given liquid loading A, the value of S is 
inversely proportional to the surface area of a droplet. In other words, 
the heat sink parameter S denotes the degree of dispersion of the 
liquid in the mist flow. 
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Constant Wall Tempera tu re . Due to the evaporation of the 
droplets, the vapor velocity increases along the tube. Figure 2 shows 
the variation of vapor velocity with the axial locations. The stronger 
the heat sink effect the faster the droplets evaporate, and therefore 
the more the vapor velocity increases along the tube. Eventually, all 
the droplets are evaporated and the flow becomes single phase vapor 
flow. The final vapor velocity is dependent upon the initial liquid 
loading A as indicated in Fig. 2. For example, the maximum liquid 
loading considered in this study is 1.0. The corresponding final single 
phase vapor Reynolds number becomes twice its inlet value when all 
the liquid is evaporated. 

The local Nusselt number of mist flow is defined as 

Nu* 
qw2r0 dd 

(Tw - Tm)k 1 - 0m dfl fl=i 
(40) 

which are presented as a function of X in Fig. 3 for S equals 15 and 
100, and in Fig. 4 for S equals 60 and 200 with the liquid loading as 
a parameter. 

Figures 3 and 4 indicate that the magnitude of Nusselt number is 
sensitive to the variation of the heat sink parameter S. Large value 
of S means strong heat sink and gives high heat transfer rate from the 
wall. For the extreme condition of single phase vapor flow, the heat 
sink parameter S equals zero. The present calculations give the same 
single phase results as obtained by Kays [1]. At far downstream of any 
droplet flow, all the droplets are evaporated completely at the location 
indicated by the dashed line in Figs. 3 and 4. Beyond this point, the 
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Fig. 2 The variation of mean vapor velocity with axial locations at constant 
wall temperature conditions 

flow is single phase; however, it will take additional distance to develop 
its temperature profile fully. Eventually, the fully developed Nusselt 
number for laminar single phase flow, 3.66, is reached. This means 
that the mist flow heat transfer is essentially a generalized entrance 
phenomenon of vapor flow heat transfer. 

In equation (35), when the value of heat sink parameter S is fixed 
the total surface area of droplets is fixed. Then the equation (39) in
dicates that at the given value of S, a large value of A implies the 
droplet size is large in the stream. As indicated in Figs. 3 and 4, the 
mist flow with a same value of S but large value of A travels far before 
all the droplets are completely evaporated. On the other hand, for a 
given liquid loading parameter A, a small value of S implies large 
droplets which travel far before they are evaporated completely. 

The mean vapor temperature increases along the axial direction. 
The variation of the non-dimensional mean vapor temperature 8m 

is shown in Fig. 5 for S equals 15 and 100, and in Fig. 6 for S equals 
60 and 200. When the value of heat sink parameter S is high, the 
thermal shielding effect of the droplets to the heat transfer from wall 
is strong. Hence, the mean vapor temperature increases at a slow rate 
along the tube. Eventually, all the droplets disappear far downstream. 
The bulk mean vapor temperature approaches the wall temperature 
asymptotically in all the cases. 

With the Nuj and dm known, the wall heat flux can be evaluated 
from equation (40) where the (Tw — Ts) can be evaluated from (Tw 

- Tm)(i - em). 
Constant Heat Flux. The local Nusselt number for mist flow at 

constant wall heat flux condition is defined as 

Nxix=-
qw2r0 

•• , (41) 
Win — L ml™ "w ~ "m 

where the 6 is defined in equation (23). The Nux is presented in Fig. 
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Fig. 4 The variation of local Nusselt number with axial locations for S = 60, 
200 at constant wall temperature 
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Fig. 3 The variation of local Nusselt number with axial locations for S = 15, Fig. 5 The variation of mean vapor temperature with axial locations for S 
100 at constant wall temperatures = 15, 100 at constant wall temperature 
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Fig. 7 The variation of local Nusselt number with axial locations for S = 15, Fig. 9 The variation of wall temperature with axial locations at constant heat 
100 at constant wall fluxes flux conditions 

7 as a function of X for S equals 15 and 100, and in Fig. 8 for S equals 
60 and 200. Generally, the same trend of variation as that of Figs. 3 
and 4 are observed. However, the Nusselt number for constant flux 
case is always higher than the Nusselt number for constant wall 
temperature case at the same inlet condition. Similarly, the mist flow 
eventually changes into single phase vapor flow with a fully developed 
Nusselt number 4.36, which agrees well with the result of single phase 
laminar flow. Like the constant wall temperature condition, when the 
S value is fixed the mist flow travels far for large values of A, which 
means the same total droplet surface area but large droplet size in the 
flow. 

For the same liquid loading parameter A, the flow with larger 
droplets will have smaller S due to the less number of droplets. The 
larger droplets contain more liquid and therefore tend to take a longer 
distance to evaporate completely. On the other hand, this flow with 
large droplets will have less capability to cool the vapor. Subsequently, 
higher mean vapor temperature will be observed, which tend to 
evaporate the droplets faster. At constant wall temperature condi
tions, the increase of mean vapor temperature has a limit which is the 
wall temperature. However, in constant wall heat flux condition the 
mean vapor temperature may increase, bascially, without bound. The 
location where all the droplets evaporate completely is determined 
based on these two competing effects. 

For constant heat flux condition the variation of wall temperature 
along the axial location X is shown in Fig. 9 for various S values. It 
indicates that the smaller the value of S, the faster the wall temper
ature increases. After all the droplets disappear, the wall temperature 
increases very rapidly like the single phase vapor heat transfer. 

The effect of wall superheat parameter C on the local Nusselt 
number Nu* is shown in Fig. 10. The dashed curves are for constant 
wall heat flux condition and the solid curves are for constant wall 
temperature condition. It appears from the figure that for high values 

of C the droplets evaporate fast and the local heat transfer reduces 
quickly along the stream. 

Finally, the variation of normalized droplet diameter D, along the 
axial location X, is shown in Fig. 11 for S equals 15 and 100 at constant 
heat flux condition. Generally, the droplet size reduces at a very fast 
rate when its size is getting smaller. This is because the surface to 
volume ratio of a droplet increases rapidly as its size reduces. It is also 
interesting to compare the curves with same A but different S. The 
curve of smaller S shows slower reduction of the normalized droplet 
size. 
C o nc l us i o n 

The laminar mist flow heat transfer in tubes is strongly dependent 
upon the liquid loading parameter A, the heat sink parameter S, and 
the super-heat parameter C. In the present study, the fundamental 
heat transfer beahavior of laminar mist flow at constant wall tem
perature and constant wall flux conditions is revealed. The classical 
laminar vapor flow heat transfer turns out to be a special case of the 
laminar mist flow heat transfer phenomenon. 
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APPENDIX 
The Heat Transfer Coefficient of Mist Droplets 

The convective heat transfer coefficient of droplets in mist flow is 
[15] 

^ = 2 . 0 + 0.6Re(i
1/2Pr1/3 

k 
(A-l) 

Since the size of the droplet is small, equation (A-l) may be approx
imated by 

hDd 
2.0 (A-2) 

The criterion for the validity of this simplification in an upflowing 
accelerating mist flow is derived in this Appendix. 

Equation (A-2) is accurate if the second term at the right side of 
(A-l) is much smaller than the first term. Since the Pr of most vapor 
is close to 1, that gives 

Red ; Pv(V- U)d 100 
« 

9 
(A-3) 

The Re,; is evaluated from the relative velocity between the droplet 
and vapor which can be described by the motion equation of droplet. 
As indicated in (A-3), only the limiting condition is of concern; the 
droplet size at inlet can be used as a characteristic representation in 
the motion equation. That gives 

dU 
••P(U-V)-g (A-4) dt 

where 

/5 = 18/X/PWO2 (A-5) 

is derived from Stokes drag for small droplets at small Re,;. Equation 
(A-4) is for vertical upward mist flow with very low vapor density. 
Equation (A-4) can be written in terms of the relative velocity (U — 
V) by adding the term dV/dt to both sides of the equation. 

d 

dt dt 
(A-6) 

The maximum of the relative velocity happens when d(V — U)/dt 
equals zero. Setting equation (A-6) to zero, the maximum relative 
velocity can be evaluated in terms of dV/dt which is to be found. 
Therefore, the criterion (A-3) becomes 

dg d dV 100 
— + - « 
va va dt 9 

(A-7) 

where dV/dt is to be evaluated. 
The vapor velocity V can be related to the droplet size in the 

evaporating mist flow. From equations (10) and(14) the vapor velocity 

V0 

1 + A ( 1 - D 3 ) (A-8) 

where the nondimensional droplet size D varies along with time, which 
can be evaluated from the energy balance of a droplet. That gives 
[5] 

D2> 

where 

—) 
pCP) 

2Xt/d0
2 

1 + 0.5C 

(A-9) 

(A-10) 

Equation (A-9) is in a similar form to the parabolic profile. The 
same assumption found in reference [16] is used in the derivation. 
From equations (A-8) and (A-10), we obtain 

— =3ADV0— (A-ll) 
dt d0

2 

Substituting equation (A-ll) into equation (A-7) with the approxi
mation using do for d at the location of maximum relative velocity, 
the criterion for the validity of equation (A-2) becomes 

IReMpA /Re'\ / 3AC 

FrJU/. \PrHl + 0.5C, 
«200 

where 

Re' = Vodo/v 

Fr = VoVgdo 

(A-12) 

(A-13) 

(A-14) 

For example, the upward water-vapor mist flow with A = 1, C = 0.3, 
Vo = 2 m/s at atmospheric conditions with droplet size 100 fim is well 
within the range of validity of the equation (A-12). 
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Liquid-Liquid Direct-Contact Heat 
Transfer in a Spray Column 
A computer-aided measuring technique was used for a study of direct-contact liquid-liq
uid heat transfer. Measurements of local mean and bulk temperatures of dispersed phase, 
continuous phase, and interface allow determination of the local heat transfer coefficients 
on both sides of the interface. Obtained results are either presented in terms of Nusselt 
number correlations or are discussed qualitatively. 

I n t r o d u c t i o n 
Numerous extensive reviews of experimental and theoretical in

vestigations of direct-contact liquid-liquid heat transfer were pub
lished over the past years, most notably by Sideman and Shabtai [1], 
Sideman [2], Kehat and Sideman [3], Ferrarini [4], Hupfauf [5], and 
recently by Buhler [6]. From these and other publications it is quite 
apparent that the mechanism of direct-contact heat transfer has not 
been satisfactorily explored. For instance, none of the reported re
search has been directed toward the determination of the local heat 
transfer coefficients on both sides of the liquid-liquid interface, be 
it through a rigorous analysis with realistic boundary conditions or 
a carefully designed experiment. Theoretical approaches continue 
to rely on constraints which on one hand facilitate the analysis, and 
on the other hand limit their usefulness to qualitative results. Ex
perimental studies of direct-contact heat transfer turn out to be rather 
involved since they require exact temperature measurements in both 
phases, including the liquid-liquid interface. 

Recently, Moresco and Marschali [7] presented a computer-aided 
experimental technique which allows determination of the temper
ature fields in a direct-contact heat exchanger. Details of this mea
suring technique can be found in reference [7,8]; thus only the general 
approach need be discussed here. This technique was used to deter
mine the local temperature of the continuous flow, the dispersed flow, 
and the liquid-liquid interface in a vertical, counterflow spray-column. 
With the temperature distributions known, local heat transfer coef
ficients were determined and correlated. 

Experimental Procedure and Data Processing 
Temperature measurements were carried out with the help of a 

commercially available thermocouple made from 0.025 mm dia alumel 
and chromel wire. The junction of the thermocouple was measured 
to have a diameter of 0.0584 mm. This thermocouple is supported by 
a glass cylinder as shown in Fig. 1. The outer diameter of the glass 
cylinder is approximately 0.2 mm. The probe can be moved vertically 
and locked in any desired position within the column. Continuous 
phase and dispersed phase flow freely in a random fashion over the 
thermocouple junction. High speed movies revealed that as the dis
persed phase drops are pierced by the probe, the liquid-liquid inter
face is not significantly disturbed as long as the probe is aligned with 
the drop flow direction. Thermo voltages were recorded every 0.65 
10~3 s, converted to temperatures, and stored for further processing 
in a micro-computer. 

Figure 2 shows a recording of temperatures as a dispersed liquid 
drop passes over the thermocouple probe. This recording was obtained 
in an experiment in which hot water streamed from top to bottom of 
the column as continuous phase while cold oil flowed upward in uni
form droplets as the dispersed phase. The black dots represent the 
recorded thermocouple temperatures. The major task now is to correct 
the temperature readings for the time response of the thermocouple 
and to determine in which phase the measurements were taken. This 
is achieved through use of a computer code which is based on the 

following assumptions: At the liquid-liquid interface, both phases 
have the same temperature; the heat flux across the liquid-liquid 
interface is continuous; and the time constant of the thermocouple 
takes on a different value in the continuous and dispersed phase, 
mainly because of the different physical properties in both phases. 
First a search program is invoked which, based on these assumptions, 
locates the liquid-liquid interfaces. Then a lumped-capacity analysis 
of the thermocouple in contact with each fluid is used to determine 
the respective fluid temperatures in terms of thermocouple temper
ature history and the particular time constants. The correct fluid 
temperatures are presented in Fig. 2 as crosses. Also shown are the 
locations of the liquid-liquid interface. Since the drop velocity is 
known, the distance between the two interface locations can be 
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evaluated. Assuming a spherical drop shape and a cylindrically 
symmetric temperature profile with respect to the vertical drop axis, 
the distance between the two interface locations determines where 
the thermocouple enters, moves across, and leaves the drop. Fifty to 
100 such temperature histories obtained at a fixed location in the 
column are sufficient to determine the local bulk temperature of the 
continuous phase and the local mean temperature of the dispersed 
phase, as well as the local mean liquid-liquid interface temperature. 
AH temperature calculations were carried out with developed com
puter codes. Figure 3 shows for the same experiment the measured 
local water bulk temperature Tc, mean interface temperature 71,, and 
mean oil temperature T<* versus the column length. In addition to the 
discussed measurements, flowrates, inlet and outlet temperatures, 
drop size and velocity, and hold-up were also determined. 

H e a t T r a n s f e r C a l c u l a t i o n s 
Once the temperatures of the continuous phase, the interface, and 

the dispersed phase along the column are found, as shown in Fig. 3, 
the local internal mean heat transfer coefficient hd is found from the 
energy balance. 

mdCpd-rL-hdA(Ti-Td) = 0 
at 

(1) 

In equation (1) rtid is the mass of a single droplet of dispersed phase 
and cpd is the specific heat of the dispersed phase. The derivative of 
the dispersed phase temperature Td with respect to time t is calcu
lated from 

dTd dTd 

dt dz 
VdlT 

where Ud/T is the velocity of the dispersed phase droplet with respect 
to the column and z is a coordinate aligned with the column axis. The 
derivative dTd/dz is obtained from a third order spline fit of the local 
mean dispersed phase temperature Td over the column length, A is 
the surface area of a droplet, T; and Td are the local mean interface 
temperature and dispersed phase temperatures, respectively. 

For the external heat transfer coefficient hc, an energy balance 
yields 

dTd 
mdcpd—r ~ hcA(Tc - Ti) = 0 

dt 
(2) 

In this equation Tc is the local continuous phase bulk temperature, 
while Ti is again the local interface temperature. 

Once the two heat transfer coefficients hc and hd are known, an 
overall local heat transfer coefficient ho is derived from 

ho hc hd 

Local Nusselt numbers for the internal and external heat transfer 
coefficients are calculated from 

Nud 

and 

Nuc = 

hdD 

kd 

hcD 

(3) 

(4) 

for the dispersed phase and continuous phase, respectively. Reynolds 
numbers for continuous and dispersed phase are obtained from the 
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Fig. 3 Local bulk water temperature, local mean Interface temperature, and 
local mean dispersed flow temperature versus column length 
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and 
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urD 

Vc 

_Vj£ 

I'd 

(5) 

(6) 

where ur is the relative velocity of the droplets with respect to the 
continuous phase, D is the drop diameter, and v is the kinematic 
viscosity of the two fluids, respectively. 

In the region near the nozzle for dispersed inlet flow (from zero to 
about 16 cm from the nozzle), in which temperature probe data were 
not recorded due to the rapid variation of drop shape, a conservative 
estimate of the average heat transfer coefficient was made. Assuming 
that the temperature of the dispersed phase and the interface de
creases linearly from its values at the position 16 centimeters from 
the nozzle down to the inlet dispersed phase inlet temperature and 
the continuous phase temperature decreases linearly down to the 
continuous phase exit temperature, equations (1) and (2) were solved 
for hc and hd, and corresponding average Nusselt numbers were 
calculated for this region of the column. 

Experiments were carried out in an Elgin type spray column with 
an inner diameter of 0.05 m and an effective length of 1.20 m. Distilled 
water served as the continuous phase fluid, while Amsco odorless 
mineral spirits were used as dispersed phase fluid. All physical 
properties of the oil, with the exception of the thermal conductivity, 
were measured over the temperature range of interest. The thermal 
conductivity was obtained from the literature. Water inlet tempera
tures were varied between 300 and 370K, and water flow rates ranged 
from 0.17 * 10~2 kg/s to 0.3 * 10~2 kg/s. Dispersed phase hold-up 
ranged from 0.7 to 1.5 percent, while drop diameter took on values 
from 0.007 to 0.01 m. For a given set of inlet temperatures and flow 
rates, variation in drop diameter could not be noticed. 

Results 

It seems to be appropriate to discuss first the general behavior of 
the local heat transfer coefficients in terms of relevant parameters. 
Not surprisingly, the coefficients hc and hd are relatively constant 
along the column except for a minor increase near the coalescence 
region for the droplets and a dramatically higher value for hd near the 

.Nomenclature. 
A = droplet surface area 
Cpd = specific heat of dispersed phase 
D = drop diameter 
hc = external heat transfer coefficient 
hd = internal heat transfer coefficient 
kc = thermal conductivity of continuous 

phase 
kd = thermal conductivity of dispersed 

phase 

md = mass of single droplet 
Nuc = continuous phase Nusselt number 
Nud = dispersed phase Nusselt number 
Pe^ = dispersed phase Peclet number 
Rec = continuous phase Reynolds number 
Re<i = dispersed phase Reynolds number 
t = time 
Tc = continuous phase bulk temperature 
Td = dispersed phase mean temperature 

Tt = interface mean temperature 
vd/T = drop velocity relative to column 
ur = drop velocity relative to continuous 

phase 
2 = coordinate 
Mi = dispersed phase viscosity 
Mo = continuous phase viscosity 
vc = continuous phase kinematic viscosity 
I'd = dispersed phase kinematic viscosity 
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dispersed phase nozzle. Due to the low thermal conductivity of the 
dispersed fluid (oil), the inverse of the internal heat transfer coeffi
cient 1/hd is the major governing resistance to overall heat ex
change. 

Experimental results for the internal Nusselt numbers are shown 
in Fig. 4. Measured Nusselt numbers are consistently 15 percent 
higher than Nusselt number predictions obtained with the popular 
Handlos and Baron [9] equation 

Nud 
0.00375 Ped 

(7) 
(1 + m/no) 

Equation (7) was postulated for heat or mass transfer based on as
sumed circular internal circulation patterns and other assumptions 
not supported by experimental evidence. A stepwise regression 
analysis of experimental data obtained in this study was performed 
and the following Nusselt number relationship was found to represent 
the experimental results well. 

Nud = 0.0178 Red °-9BPrd°-s (8) 

Outside fluid properties enter this equation indirectly through the 
relative velocity between continuous and dispersed phase used in the 
Reynolds number. 

External heat transfer coefficients hc plotted versus the continuous 
phase Reynolds number are presented in Fig. 5. The data points in 
this figure are mean column values of the local heat transfer coeffi
cients. Peclet number variations were small for a particular experi
ment and the values of hc varied within less than ± 10 percent. Results 
show Nusselt numbers to be considerably smaller than the values 
formerly predicted analytically, using assumed flowfields for the 
circulating droplets, as for instance, reported in reference [10,11]. The 
Nusselt numbers are also considerably smaller than the ones predicted 
by Ferrarini [4] which were used in the recent investigations by 
Hupfauf [5] and Biihler [6]. Interestingly enough, the Nusselt num
bers obtained in this study are also much smaller than those which 
can be predicted with the Ranz and Marshall equation [12]. Even 
though this equation was originally obtained for droplets evaporating 
in air, it is consistently recommended for prediction of heat transfer 
rates from solid spheres to a surrounding fluid. Heat transfer from 
a solid sphere to a moving fluid has frequently been assumed to be a 
limiting case of heat transfer from a droplet moving in a fluid. The 
results of this study do not support this assumption. 

It should be pointed out that all formerly reported equations for 
external Nusselt numbers or external heat transfer coefficients were 
obtained either through analysis containing frequently unwarranted 
assumptions, or through mass transfer experiments with dissolving 
drops which clearly are not realistic substitutes for heat transfer ex
periments, or by assuming internal heat transfer coefficients and then 
forcing the external heat transfer coefficients to take on such values 
that internal and external heat transfer coefficients match experi
mentally obtained overall heat transfer coefficients. The only ex
ception to the just described procedures is apparently the one used 
by Pierce [13]. Pierce found in his experimental work that external 
Nusselt numbers for liquid mercury drops fell below those for solid 
spheres. The range of data obtained by Pierce as well as the Ranz and 
Marshall equation are also shown in Fig. 5. While there is no obvious 
explanation why the Nusselt numbers found in this study are below 
the Nusselt numbers obtained from the Ranz and Marshall equation, 
it is interesting to note that Pierce's study which is the only other 
experimental study aside from this one in which external heat transfer 
coefficients were determined directly, yielded Nusselt numbers of the 
same order. 

The external Nusselt numbers were correlated by a stepwise re
gression routine and the following relationship was established. 

Nuc = 0.156 Rec
0-5 Prc

0-6 (9) 

A rough estimation of the average heat transfer coefficients near the 
dispersed phase entrance nozzle following the procedure outlined 
previously revealed that not only are these heat transfer coefficients 
higher than those along the major portion of the column, but the in
ternal heat transfer coefficients have become so large as compared 

Nud =0.0178 Rej p ' d 0.95 p r 0.22 

+ 15% 

2000 

"d ' 'd 

Fig. 4 Internal Nusselt number correlation 

Fig. 5 External Nusselt number correlation 

to the external heat transfer coefficient, that the major resistance to 
heat transfer is now found to lie in the continuous phase. This result 
seems to indicate that the heat transfer mechanism near the dispersed 
phase entrance region is governed by different phenomena than in 
the rest of the column. High speed films taken show dramatic accel
erations take place during drop release which certainly should have 
an influence on the heat transfer mechanism. 

Conclusion 
A refined, computer-aided measuring technique allowed deter

mination of local temperatures of continuous phase, dispersed phase, 
and interface in a liquid-liquid direct-contact heat exchanger. A 
complete set of these temperatures has never been measured before. 
Based on the obtained temperature profiles, local heat transfer 
coefficients at both sides of the liquid-liquid interface were calculated. 
The experiments were carried out with oil as the dispersed phase, 
while pure water served as continuous phase. The following conclu
sions below can be drawn from the experimental results. 

The internal heat transfer coefficient for a rising drop in a contin
uous phase can be predicted reasonably well with the Handlos and 
Baron [9] equation, except for regions in which entrance and exit ef
fects play a dominant role. For conditions chosen in this study, the 
correlation 

Nu,i = 0.0178 Red°-9B Prd
0-22 (10) 

is a better representation for the internal heat transfer coeffi
cients. 

During drop formation and release, the internal heat transfer 
coefficients are very much higher than predicted by equation (7). In 
fact, during this process, the major resistance to heat transfer is found 
in the continuous and not, as usually assumed, in the dispersed 
phase. 

External heat transfer coefficients (in the continuous phase) have 
significantly lower values than the values obtained in previous en-
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deavors. Since in previous investigations the liquid-liquid interface 

temperature has never been measured, reported results had to be 

based on assumptions which, according to this study are not realistic. 

For the range investigated, external heat transfer coefficients are well 

represented by 

Nuc = 0.156 Rec
Q'6 P r c

o s (11) 
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A Mechanistic Model for 
Countercurrent Steam-Water Flow 
A one-dimensional model has been developed to describe the flow behavior of a liquid film 
draining down a heated wall, in the presence of countercurrent vapor flow. The effects of 
nonequilibrium void generation at the walls and condensation of countercurrent vapor 
on the penetrating liquid film interface, as well as on the bypassed liquid, have been con
sidered. The momentum exchange is described by a correlation, assumed to apply at the 
entrance region, where the amount of liquid film flow is limited by the net vapor upflow. 
Theoretical predictions were compared with over 600 test results, obtained in '/is- and 
2/is-scale models of a PWR downcomer, over a wide range of test parameters. The compar
isons exhibit a fairly good agreement. 

Introduction 
During a postulated loss-of-coolant accident (LOCA) due to a break 

in a cold leg of a large pressurized water reactor (PWR), emergency 
core cooling (ECC) water would be injected into the primary system 
piping to provide cooling for the reactor core. Depressurization during 
the blowdown phase of the LOCA would result in core steam flow in 
the reverse direction down through the core and up the downcomer 
annulus. This upward steam flow has the potential to retard or even 
prevent the penetration of the injected ECC fluid to the lower plenum. 
In addition, steam generated on the heated walls of the pressure vessel 
and core barrel may also cause a delay in the penetration of ECC fluid 
to the lower plenum. Bypass of ECC fluid to the broken cold leg would 
delay refilling of the lower plenum and consequently delay the re-
flooding and cooling of the reactor core. 

Extensive experimental studies of downcomer behavior have been 
conducted at Battelle Columbus Laboratories (BCL) [1,2] and at 
Creare [3,4] in PWR models of different scales. A schematic sketch 
of a reactor scale model is shown in Fig. 1. ECC is injected into three 
cold legs at a fixed rate, W^in, and enters the downcomer as a hori
zontal jet which impacts the core barrel, distributes over it, and 
changes its flow direction. It may flow downward and/or it may be 
bypassed around the upper downcomer annulus and out the break. 
Visual observations indicate that the penetration phenomenon is very 
chaotic in nature, involving both thermal effects (such as hot wall 
quenching, vapor generation, and condensation) and hydrodynamic 
effects (such as surface wave development, instabilities leading to 
"bridging" and plug flow, entrainment, and turbulent mixing). Be
cause of these complications, purely theoretical approaches often face 
numerous difficulties, and the use of empirical models is necessary. 

Semi-empirical correlations have been constructed by several in
vestigators using numerical best fits to test data. These correlations 
include functional dependencies based on physical reasoning where 
possible. In general, the confidence with which we can use these 
semi-empirical correlations to extrapolate to conditions not tested 
is a function of the degree of physical basis supporting the model. 

In the models developed by Block, et al. [5] at Creare, and Car-
biener, et al. [6] at BCL, the momentum balance between the gas and 
the liquid is established by the empirical Wallis flooding correlation 
[7]. Overall condensation is described in terms of an empirical pa
rameter which reflects the degree of nonequilibrium. The condensa
tion parameter as well as the two arbitrary parameters in Wallis 
correlation are determined from numerical best fits to steam-water 
penetration data. 

A comprehensive statistical analysis of data trends has been per
formed by Beckner, et al. [8]. A new correlation form has been sug
gested which includes five free parameters evaluated for each geom
etry. The comparison between experimental data and prediction 
exhibited very good agreement. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
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Alb and Chambre [9] developed a different type of correlation, 
based on dimensional analysis. It was given in terms of Froude 
numbers based on superficial velocities of steam and water, and also 
included five free parameters determined from data taken in Battelle's 
VIB- and 2/i6-scale models. Here also, a very good fit was obtained. 

A time dependent, multi-dimensional formulation has been de
veloped for the computer program K-TIF [10] which utilizes empirical 
functional dependencies to describe mean transport and interaction 
processes between the countercurrent streams of vapor and liquid. 

In an attempt to understand the effects of condensation, heated 
walls, and countercurrent flow on the ECC penetration and down
comer dynamics we have developed a physical model based on the 
simple flow pattern of a liquid film draining down a heated wall, as
suming that a one-dimensional presentation of this flow configuration 
represents the average chaotic phenomenon which occurs in the 
downcomer. 

Model 
Figure 2 is a sketch of the geometry considered. Subcooled liquid 

with temperature Tan is injected at a rate of Wem into the downcomer. 
In the downcomer entrance region, momentum exchange occurs be
tween the liquid and the upward flowing vapor, resulting in a liquid 
flow partitioning; some liquid flows down the superheated walls as 
a film, with mass flow rate Wei- The remainder, Wein - Wei, is by
passed and flows toward the break. Vapor is generated by subcooled 
boiling as the liquid film drains down the walls. At small distances 
from the entrance, the vapor generated remains as discrete bubbles 
attached to the surface while growing and collapsing. In this region 
the fraction of wall heat flux used in the formation of net vapor is 
insignificant. At a specific distance from the entrance, the bubble 
diameter is large enough so that it detaches from, or slides along, the 
heated surface. New bubbles are rapidly created at these active sites, 
and significant void is produced. The point at which void is first 
formed under the nonequilibrium conditions is denoted by zo, and 

Intact Cold Leg 

•Wout 

Broken Leg 

Fig. 1 Schematic sketch of a reactor scale model 
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the mixed mean liquid temperature at that point is To. (In Fig. 2, we 
describe the extreme case in which the vapor generated at the wall 
is contained in the liquid film as a bubbly layer. Actually, bubbles may 
leave the liquid film at any location along the wall.) 

The vapor produced at the hot walls and/or vapor introduced at 
the bottom of the annulus (reverse core steam) flows upward, estab
lishing a countercurrent flow. Mass transfer in the system, in the form 
of condensation (at the vapor-liquid film interface and on the by
passed liquid) and vaporization (at the heated walls), affects the 
momentum exchange between the two phases, which in turn influ
ences the overall system behavior. Depending on the mass exchange 
phenomena which take place along the film, two film regions may be 
observed: (1) when zo^z <L, convection, wall vapor production, and 
condensation at the countercurrent vapor-liquid interface are involved 
simultaneously; (2) when 0 < z < zo, only convection and condensa
tion are involved. 

In developing the conservation equations we consider a well mixed 
turbulent liquid film for which the velocity and temperature profiles 
may be assumed to be uniform normal to the wall. Any waves and 
instabilities which may be present due to the vapor upflow are ne
glected. We also assume that the pressure in the downcomer is con
stant and that the vapor is at the saturation temperature. For the 
general case which involves forced convection, vapor generation and 
countercurrent condensation, the change in liquid flow rate (W/) is 
equal to the net mass exchange of vapor condensed at the film inter
face (Wc) and vapor generated at the wall (Wgw). 

dWe = dWc - dWgl (1) 

The liquid and vapor energy equations are given respectively by 

(We + dWc - dWgw)Cp(T - To + dT) + dWglvCp(Ts - T0) 

= WeCp(T - To) + [hfg + CP(TS - T0)]dWc + Phqedz, (2) 

hfgdWgw = Phqgdz, (3) 

where q e is the quenching heat flux (the heat transferred to the liquid 
which raises its enthalpy), qg is the boiling heat flux (heat supplied 
to generate void), Cp is the liquid specific heat, and Ph is the heated 
perimeter. 

By combining equations (2) and (3) we get the mixture energy 
equation 

CpW£dT = Phqwdz + [hfg + CP(TS - T)] (dWc - dWgJ, (4) 

where qw is the wall heat flux, given by 

Qui = Q£ + Qg- (5) 

Equation (4) can also be written as 

-d\Wi[hfg + Cp(Ts-T)}) = Phqwdz. (6) 

Substituting equations (3) and (5) into equation (4) and assuming that 
hfg»Cp(Ts-T) we get 

/o°oo 
/.& 0 0 

Wgc ( core stsam flow) 

Fig. 2 Schematic sketch ot a tailing liquid film in countercurrent flow 

CPWe 
dT_ 

dz 
•• PhQt + hf8 

dWc 

dz 
(7) 

The temperature profile may now be evaluated according to 
equation (7) if wall heat flux partitioning, the condensation distri
bution, and the local liquid film flow rate are known. At present, most 
of these parameters are unknown in countercurrent flows, suggesting 
the use of certain approximations and assumptions. Two special cases 
may be examined. 

No Condensation. When no countercurrent condensation occurs 
along the film, the energy transport processes are similar to those 
described in several papers [11, 12] dealing with the determination 
of the void fraction distribution in a heated tube. Equation (7) is then 
simplified to 

dT Phqe 

dz CDWe 
(8) 

and can be integrated in the same way as it was done in reference [11] 
to yield 

T-Ts 
exp -

z - z o ' 
(9) 

T0-T, 

where £ is the significant boiling length (difference between the length 
which is required to heat the bulk liquid up to saturation when no 
evaporation takes place, and zo) given by 

WeoCp(Ts - Tp) 
£=-

PhQu 
(10) 

The point z0 is determined from 

^Nomenclature™ 

A = annulus cross section 
C = parameter 
Ca = average circumference 
Cp = specific heat of liquid 
/ , /1 = parameters 
g = gravitational acceleration 
h = heat transfer coefficient 
hfg = heat of vaporization 
Jx* = dimensionless volumetric flux of phase 

x 
Jcbp* — dimensionless volumetric flux of 

steam condensed on bypassed liquid 
Jgb* = dimensionless volumetric flux of core 

steam at complete bypass point 
Jtp* — dimensionless volumetric flux of 

penetrating liquid 

L = length of core barrel 
£ = significant boiling length 
m = parameter 
P = pressure 
Ph = heated perimeter 
Q, Qi, Q2 = heat transfer rates 
Q* = dimensionless heat transfer rate 
q = heat flux 
S = gap thickness 
T = temperature 
Ts = saturation temperature 
W = mass flow rate 
Wgw = vapor generation rate 
z = distance 
F = mass flow rate per unit width 

X = parameter 
fjL = viscosity 
p = density 

Subscr ip ts 

c = condensation 
g = vapor 
gc = core steam 
£ = liquid 
£i = film inlet 
i'in = inlet of cold leg 
o = point of net vaporization 
t = total 
tm = net mass exchange on liquid film 
w = wall 
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zo: 
WtiCp(TQ-Tei) 

Phqw 

(ID 

Equation (9) describes the temperature profile assumed by Zuber, 
et al. [12] which was shown to be adequate for void fraction calculation 
in tubes. Correlations which predict the temperature at the net vapor, 
generation point (To) for flows in a tube are available in the literature 
[13,14]. 

Adiabatic Wall. When qw = qt - 0, equations (1-3) reduce to 
the case of condensation on subcooled liquid flowing on an adiabatic 
wall, solved by Linehan, et al. [15] and Liu, et al. [16]. The integration 
of equation (7) in this case results in the following temperature pro
file. 

r ( i ) = T « + ^ l n — (12) 
- P W£i 

Net Mass Exchange. In addition to the special cases studied, 
valuable information may be obtained by evaluating the net mass 
exchange along the wall. To do so, equation (6) is integrated along the 
film, taking into account the different mass exchange processes in each 
film region. 

0 < z < zo. In this region no vapor is generated at the walls and 
the only mass exchange is due to countercurrent condensation of 
upflow steam. The integration of equation (6) from z = 0 to «o subject 
to the boundary conditions 

z = o, We = Wei, T = Tei, 

z = zo, We = Weo, T = T0, 

results in a relationship between Weo and Wet, 

WeAhfe + Cp(Ts-Tei)]-Ql 

hfe + Cp(Ts - To) 

where 

W£0--

(13) 

(14) 

Phqwdz. (15) 

ZQ< z < L. In this region the integration of equation (6) from zo 
to z yields 

Weo[hfB + Cp(Ts-To)]-Q2{z) 

hfg + Cp(Ts-T) 

where Q2{z) is the wall heat transfer rate given by 

Qi(z)= C Phqwdz. (17) 

The total net mass exchange along the film (Wtm) is described 
by 

Wtr W£i ~ Wed), 

Wtm = 
Q - WeiCp[T(L) - T£i] 

hfg + Cp[Ts-T(L)} ' 

where 

Q = Qi + Q2(L) = §Lphqwdz. 

The amount of vapor generated is given by 

Q2(z) ~ WeoCp(T - Tp) , 
Wgwt{z) •• 

hfs + Cp(Ts-T) 
dWc, 

where 

Wgwt(z) •• f dWe, 

(18) 

(19) 

(20) 

(21) 

(22) 

M o m e n t u m E x c h a n g e 
The amount of heat removed by the liquid, and consequently the 

amount of condensation and vaporization along the liquid film, is 
dependent on the inlet liquid flow rate, Wei, which in turn is limited 

by the momentum exchange between the two countercurrent streams. 
This limiting mechanism is not well defined as it may result from a 
combination of interfacial shear, turbulent mixing, entrainment, or 
surface instabilities. Two major techniques may be used to overcome 
this problem. One technique assumes an empirical functional form 
for the interfacial momentum exchange and solves numerically the 
multidimensional two-phase momentum equations [10]. A simpler 
and less expensive method, which is global in nature and consequently 
generally more limited in its application, uses "flooding" correlations 
to describe the net result of the total momentum exchange between 
the phases. At present, we use the latter approach, utilizing the 
well-known Wallis correlation [7] 

JSi*
1'2 + mJei*

1/2 = C, (23) 

where m and C are empirically determined parameters and Jg* and 
Je* are dimensionless volumetric fluxes of the upflow vapor and 
downflow liquid, respectively, at the entrance region, where liquid 
hold-up is assumed to occur. 

The relation between the dimensionless flux of phase x and the 
mass flow rate is given by 

W 
J** = . , r ' ,11 /2 , (24) 

where A is the annulus cross section and Ca is the average annulus 
circumference. The choice of Ca as the characteristic dimension is 
based on experimental studies with distorted gap size which have 
shown that the data do not collapse when the hydraulic diameter is 
used as a characteristic dimension. Better agreement was obtained 
when Ca was utilized in the definition of Jx*. 

The Wallis correlation is considered as a hydrodynamic limiting 
relationship in which the upward flowing gas at the entrance region 
controls the liquid flow partitioning between film flow (Ja*) and flow 
being bypassed (Jem* ~ Jei*)- The coefficients m and C are assumed 
to be independent of thermal conditions and constant for a specific 
geometry, and so, they can be determined from air-water experiments. 
This correlation can also be applied to flows which involve mass ex
change, such as steam-water flows, by considering Jgi* to be the ef
fective gas flux for momentum exchange. In other words, Jgt* is as
sumed to be the net steam flux at the entrance region, consisting of 
steam from the simulated core (Jgc*) and the net mass exchange in 
the system. 

When applying the one-dimensional analysis to ECC penetration 
in PWR scaled models, the mass exchange is not limited only to 
condensation and/or vaporization along the liquid film. As shown in 
Fig. 2, additional mass exchange occurs on the liquid which is being 
bypassed. This mass exchange component is denoted by the nondi-
mensional parameter JcbP*- Thus, the resultant expression for Jgi* 
is 

Jgi* = Jgc* + Jtm* - Jcbp* (25) 

Rewriting equation (19) in terms of the dimensionless volumetric flux 
and substituting into equation (25) we get 

where 

Jgi* = Jgc* ~ ftJei* - Jcbp* + Q*. 

Q 
Q* •• 

A[pggCa(pe - Pg)]1/2hfg' 

Cp(Ts-Tei)lPe \ l /2 
— , and 

f-
T(L) - T£i 

Ts - Tei ' 

(26) 

(27) 

(28) 

(29) 

The dimensionless parameters X and / represent condensation 
potential and the efficiency of heat transferred to the liquid from the 
hot walls and/or from condensation, respectively. 

In an analogy to the condensation process on the liquid film we 
assume the following form for steam condensation on the liquid being 
bypassed 
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JcbP*=fiMJem*-Jei*), (30) 

where/i is a parameter representing the efficiency of steam conden
sation on the bypassed liquid. Substituting equations (26) and (30) 
into equation (23) we get 

[«/* (f - fi)\Ja* ~ / iAJ«»* + Q*]m + mJH*xn = C, (31) 

which is an implicit equation for J«* from which the liquid penetra
tion flux can be obtained. 

As shown in equation (29), the value for the parameter / may be 
obtained via the temperature T(L). However, at the present time it 
is difficult to determine this temperature analytically when simul
taneous vaporization and condensation are involved except for the 
two special cases discussed previously. In the case of an adiabatic wall, 
/ represents the condensation efficiency and from equation (12) we 
find that 

/ • 

hfs -£n 
WAL) 

(32) 
CP(TS - Tti) Wei 

An alternative form for / was derived by Liu, et al. [16] using a heat 
transfer coefficient formulation for vapor condensation on a coun-
tercurrent liquid film with adiabatic wall. 

/ i L ' 
/ : 

• e x p - 0 3 ) 

where T is the film mass flow rate per unit width and h is the heat 
transfer coefficient. 

When no condensation is present it can be shown that / assumes 
a slightly different form than given in equation (29). In this special 
case we find that 

/ : T(L)-

or with the use of equation (13) 

f- 1 — exp -

•Tti 

m To 

T « , 

(34) 

(35) 

were / represents the effectiveness of energy convection. When / = 
0, T(L) = T0 (equation (34)) and dT/dz = 0. Equation (8) indicates 
that for this case qe = 0, which means that when f = 0 all the wall heat 
flux is transferred as a boiling component to generate vapor. When 
qe becomes very large £ becomes very small (equation (10)) and 
T0 approaches Tti. Consequently, as shown by equation (35), / ap
proaches 1. 

Delivery Time Delay 
At the early stage of penetration, the walls are maintained at a high 

temperature, causing a delay in liquid delivery. In the absence of 
counterflow, it is known that the quenching liquid front velocity is 
controlled by thermal conduction within the walls. When counterflow 
of vapor (core vapor and/or wall generated vapor) is present, a re
duction of inlet liquid film flow rate may occur. In this case, the 
quenching process is hydrodynamically controlled. The end of 
quenching and subsequently, the delivery time delay, are determined 
when the quenching liquid front reaches the bottom of the channel 
and penetration commences, i.e., when Wt(L) = 0+ . From equation 
(16), with the use of equation (14), the approximate inlet liquid film 
flow rate which results in We(L) = 0 + is given in a dimensionless form 
by 

Jti' 
pel 

(36) 

Substituting this condition into equation (31), we get an implicit 
equation for Q*, which represents the wall heat transfer rate required 
to sustain a sufficiently large vapor production to result in zero pen
etration. 

The time at which the transient wall heat transfer rate (assumed 
to be conduction limited in reference [17]) is equal to the calculated 
Q* is the delivery delay time. 

R e s u l t s 

Equation (31) was solved and compared with experimental data 
for adiabatic walls. It was solved for Jgc*, assuming the liquid pene
tration flux as an independent parameter, and for Jep*, assuming Jgc* 
to be the independent parameter. A limited comparison was also 
obtained between calculated and experimental delivery time delay. 
These results will be presented in a future communication. 

As shown in equation (33), the value for / could be evaluated if the 
condensing heat transfer coefficient is known and is uniform along 
the film. Unfortunately, no such data on countercurrent condensation 
are currently available in the literature. Thus, the heat transfer 
coefficient correlation obtained by Lee, et al. [18] for a cocurrent 
steam-water flow in a rectangular channel is used. Modified for an 
annulus geometry we get 

/ = ! • •exp| -0.0074H 1 / 3N 1 / 6^^ 1 / 3 1 

'J S J«*°-29 
(37) 

\Pgl \Pe) 

were S is the annulus gap size. 
The condensation on the bypassed liquid is determined by con

sidering the situation near the complete bypass point (Jti* = 0). At 
this point the only mass exchange in the system is on the liquid being 
bypassed, and from equation (31) we find that 

A = 
Jgb* - C2 

(38) 

where Jgb* is the steam flux necessary to cause complete bypass, 
determined for a specific geometry from data correlation [19]. 

The steady steam flux (Jgc*) necessary to bypass a given amount 
of liquid was calculated from Equation (31) and is compared in Figs. 
3 and 4 to the experimentally measured values obtained in Vis- and 
2/iB-scale models. In Fig. 3, we used Creare's data obtained in their 
ViB-scale model with a deep plenum and scaled gap with various liquid 
temperatures [3], The data include "uncontrolled pressure" runs (i.e., 
the pressure in the lower plenum increases with increasing steam flow) 
and runs in which the valves on the broken cold leg were partially 
closed resulting in an increase of lower plenum pressure. The agree
ment shown in Fig. 3 is fairly good. 

Relatively good agreement is also exhibited when theoretical pre
dictions are compared with experimental data obtained in Battelle's 
Vis- [1] and 2/i5-scale [2] models. As an example, see Fig. 4. 

From the calculations it was determined that liquid penetration 
depends strongly on the externally supplied steam flow rate (Jgc*) 
and liquid subcooling, and to a lesser extent on pressure and liquid 
injection rate. The effects of subcooling and pressure on the liquid 
penetration rate at a specific Jgc* are accounted for mainly through 
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the condensation potential, X, so when X increases the liquid pene
tration rate increases. Liquid injection rate was shown to affect the 
amount of steam condensation on the bypassed liquid, thus for a 
specific Jgc* an increase in the liquid injection flow rate results in an 
increase in liquid penetration rate. However, the injection rate effect 
diminishes when the liquid is saturated, since no condensation occurs; 
it is similar to an air-water system. The consistently good agreement 
exhibited suggests that for the range of liquid temperatures and vessel 
pressures tested the condensation effect and its dependence on scale, 
subcooling, and" pressure are well modeled by the analysis. 

Equation (31) was also solved for J a*, from which the penetrating 
liquid flux, Jep*, was calculated and compared to experimental values. 
The comparison in Fig. 5 shows that the agreement is not as good as 
that shown in Figs. 3 and 4. This results primarily from the shape of 
the experimental penetration curves which indicate that a relatively 
small change in steam flow results in a relatively large change in liquid 
penetration rate. This sensitivity is the reason for the difficulties 
encountered in evaluating theoretical models by performing com
parisons with data in terms of penetrating liquid flux. 

D i s c u s s i o n 
The main objective of the present paper has been to establish a 

general solution for liquid penetration in countercurrent flow, in
volving condensation and vaporization, to simulate ECC penetration. 
This was done by developing a mechanistic model based on a one-
dimensional film flow configuration, with the assumption that it 
represents the average behavior of the chaotic phenomenon observed 
in the downcomer. The solution is based on standard mass and energy 
conservation principles, coupled with an empirical correlation which 
represents the momentum exchange. As shown, even for the simple 
case of falling film, a general solution can not be obtained unless more 
information on mass and momentum exchange in countercurrent flow 
is available. However, by using certain physical approximations the 
comparisons with experiments show consistently good agreement over 
a wide range of test conditions. 

The mechanistic approach adopted here is different from the "best 
estimate analysis" utilized in references [5] and [6] which is a semi-
empirical, lumped parameter system approach. The mechanistic 
model results in a more detailed description of flow behavior and mass 
exchange processes, identifying two condensation components: con
densation on the penetrating liquid film in countercurrent flow, and 
condensation on the bypassed liquid, which is essentially condensation 
on a turbulent liquid ring. 

As in the best estimate analysis we also use a correlation repre
senting the net effect of momentum exchange. At present we have 
used the Wallis correlation although it was shown [20] that flooding 
of air-water flows in Vis- and 2/i5-scale models of PWR's is not scaled 
well by the J* parameters. However, when the Wallis correlation is 
applied separately to data in each scaled model and separate best fit 
values for m and C are used, fairly good agreement is obtained. As long 
as the Wallis equation is used only as a correlation with no scaling 
application, the parameters m and C play no significant role and we 
can use it, as any other correlation, for our purpose. Thus, the different 
values for m and C which were used in the present analysis were 
evaluated for each geometry for air-water or steam-saturated water 
experiments. As far as scaling is concerned it appears that the Wallis 
correlation can be applied when the dependence of m and C on scale 
is evaluated. 

The condensation on the liquid film was described by using a heat 
transfer coefficient developed for cocurrent flow in a horizontal 
channel, as no data on countercurrent condensation were readily 
available in the literature. The good agreement obtained here for a 
countercurrent flow in an annulus suggests that the condensation 
mass flow does not depend strongly on geometry and/or vapor flow 
direction, for the range of flow rates discussed. This unexpected in
dication awaits experimental verification. We have tried to use the 
same correlation to describe the condensation component on the 
liquid being bypassed. However, the agreement obtained was poor. 
This was expected as the flow configuration of the falling film is dif
ferent from the configuration of the bypassed liquid. Thus, we have 
determined the condensation on the liquid being bypassed by as
suming that the condensation efficiency is constant for a given ge
ometry and flow conditions and is equal to the efficiency at the 
complete bypass point. 

We recognize that in applying this idealized one-dimensional model 
to the three-dimensional phenomena actually occurring even in the 
small scale models we have ignored several phenomena observed to 
be of importance at specific conditions, namely, periodic delivery of 
slugs of water, sweepout of liquid from the lower plenum by the core 
steam, flooding and voiding of lower plenum liquid, and boiling on 
the lower plenum hot walls. 

In spite of the obvious limitations, the model developed provides 
a useful tool for examining the effects of the major variables on liquid 
penetration in a countercurrent flow situation. The physical insights 
obtained will serve as a basis for modifying and improving existing 
correlations used for scaling ECC bypass phenomena. 
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A Self-Sustained Oscillatory Flow 
Phenomenon in Two-Phase 
Condensing Flow Systems 
This paper presents the results of an experimental and theoretical investigation of an un
stable flow phenomenon that leads to sustained limit-cycle type of oscillations of large 
amplitude, and which under certain conditions, can involve flow reversals. This unstable 
behavior normally exists for conditions of low outlet throttling. Upstream compressible 
volume and downstream inertia appear to be the dominant energy storage mechanisms 
for the self-sustained oscillations. A linearized analysis based on the system mean void 
fraction model successfully predicts the experimentally observed stability boundary. 

Introduction 
Two-phase condensing flow phenomena occur in a variety of in

dustrial applications including reheat and reboiler systems associated 
with nuclear or conventional power plants, ocean thermal energy 
conversion, space power generation, solar energy conversion, vapor 
compression refrigeration and chemical processing. 

Fluctuations in two-phase condensing flows, like those observed 
by Soliman and Berenson [1], have been attributed to local liquid film 
instabilities in the early stages of the condenser. These instabilities, 
or waves within the liquid film at the liquid vapor interface, propagate 
downstream into the semi-annular/stratified flow regime and on into 
the slug flow regime in the later portions of the condensing flow pro
cess. All of these local flow fluctuations, inherent in two-phase flow, 
contribute to stochastic fluctuations in the outlet flowrate of sub-
cooled liquid. It is significant to note that the amplitudes of these 
fluctuations may be on the order of magnitude of 5 to 30 percent of 
the mean value. 

During the present investigation, it was observed that under certain 
operating conditions, particularly with low outlet throttling, these 
random fluctuations in the outlet flowrate give way to a well-devel
oped sinusoidal oscillation or instability. In fact, the random fluctu
ations are quite likely the triggering mechanism for this type of system 
instability. A typical characteristic of this instability is that the outlet 
liquid flowrate experiences flow oscillations which tend to grow in 
amplitude up to a certain limit, and then settle down to a sustained 
oscillatory mode of fixed amplitude. The amplitude of these oscilla
tions can be substantially greater than the mean flowrate, thereby 
introducing flow reversals in the outlet flowrate. 

This type of reversing flow oscillation represents a violent flow 
process, and thus is not a desirable situation from the standpoint of 
system design and control. Experimental data representing such a 
limit cycle type of oscillations are depicted in Fig 1. The initiation, 
growth and the final limit cycle behavior of these oscillations are quite 
apparent. 

However, since the instability is oscillatory, it is natural to question 
whether it is related to the density wave or pressure drop-flowrate 
instabilities encountered in evaporating flows. There are a number 
of indicators which would eliminate it from being a density wave in
stability. First and most important, the basic physics which exist in 
the typical evaporating flow system, experiencing density wave os
cillations [2], are not present in a condensing flow system. This is also 
confirmed in reference [3]. Another indicator is that the frequency 
of the condensing flow oscillations is strongly dependent upon the 
volume of vapor upstream of the two-phase region, whereas the fre
quency for density wave oscillations is normally related to the fluid 
transport time through the evaporator. 

There are, however, some similarities between the observed con

densing flow oscillatory instability, and the pressure drop-flowrate 
instabilities [4] encountered in evaporating flows. The similarities are 
that the fluid inertia and compressibility form important energy 
storage mechanisms for both cases. Although there are differences 
in the two-phase pressure drop-flowrate behavior, the major differ
ence lies in the contribution of transient flow surge characteristics [5] 
which exist for condensing but not for evaporating flow systems. 
Therefore, the unstable flow oscillations to be investigated appear 
to be unique to condensing flow systems. 

As already mentioned, the objectives of this paper are to present 
the results of a study aimed at determining the principal physical 
mechanisms responsible for the occurrence of the above-mentioned 
sustained oscillatory behavior, and to formulate a theoretical model 
which adequately describes these mechanisms. A linearized analysis 
will then be used to establish a criterion for the onset of the observed 
unstable flow phenomenon. These theoretical results will be verified 
by direct comparison with the experimental observations. Also, a 
comparison will be made between the theoretical and experimentally 
observed frequencies of oscillations for various operating conditions. 
Finally, the system of non-linear governing equations will be solved 
numerically in an effort to establish the fact that the theoretical model 
predicts the existence of a type of limit cycle. 

Discussion of Physical Mechanisms Responsible for 
Oscillations 

Before going into the analytical details of the problem under con
sideration, it seems appropriate to discuss the possible physical 
mechanisms responsible for the limit cycle oscillations depicted in 
Fig. 1. 

Referring to the schematic of the flow system depicted in Fig. 2, 
assume that the condenser is initially operating under what is con
ventionally referred to as steady-state conditions. Also, assume that 
the system inlet and outlet pressures, p; and po respectively, remain 
constant, and that flow resistances of the system are concentrated at 
the system inlet and outlet. Next, initially assume that an inherent 
fluctuation or a disturbance in the two-phase region causes a slight 
increase in the system pressure, p, which is assumed to be uniform 
over the two-phase and the upstream vapor region. This action has 
two primary implications. First it may tend to reduce the flowrate 
coming into the system from the high pressure reservoir. The mag
nitude of this effect will of course depend upon the extent of throttling 
or the magnitude of the flow resistance that exists across the upstream 
throttling valve.1 Second, the slight pressure increase in the system 
will tend to cause the outlet flowrate of the subcooled liquid to in
crease. Again the magnitude of this increase depends upon the extent 
of throttling, or the magnitude of the flow resistance across the 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
January 4,1980. 

1 Under certain conditions the flow may be "choked." In that case, there will 
not be any flow change across the upstream throttling valve. 
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Fig. 1 Transient and sustained flow oscillations In outlet flowrate of subcooled 
liquid 

Effective Point of Complete Condensation 

'z-L 

Fig. 2 Schematic of horizontal condensing How system with upstream vapor 
region, upstream throttling, and downstream throttling 

downstream throttling valve. A secondary effect of the system pres
sure increase is that there is a momentary increase in the vapor storage 
due to a slight density increase due to compressibility. 

The increase in the liquid flowrate will cause the effective point of 

complete condensation to move downstream, thus increasing the heat 
transfer surface area available for condensation. The inertia of the 
liquid, primarily in the subcooled liquid region but also in the two-
phase region, will tend to cause the increased outlet liquid flowrate 

• N o m e n c l a t u r e * 

At - total cross-sectional area of tube, m2 

ao* — a3* = coefficients in equation (20) 
bo* = coefficient in equation (20) 
c = (CJ + c0), equation (18) 
c; = intercept on pressure drop axis, equation 

(14), KN/m2 

c0 = constant in equation (15), KN/m2 

fq = local heat flux, W/m2 

/ , = spatially averaged heat flux, W/m2 

h = enthalpy of saturated liquid, J/Kg 
h' = enthalpy of saturated vapor, J/Kg 
ki,k0 = inlet and exit orifice coefficients, 

Ap/pa'v
2 and Ap/pv2, respectively 

ki* = linearized valve resistance at inlet, 
2(ki/pa'At

2)M, KN-s/m2-g 
k0* = linearized valve resistances at outlet, 

2(fe0//oA(
2)m,KN-s/m2-g 

L = total length of the condenser plus the 
length of piping between the outlet of 
condenser and inlet of the liquid receiver, 
m 

L0 = (L - i j ) , m 
m = steady-state mean flowrate through the 

system, g/s 
mL(t) =mt(z,t)z=L,g/s 
ms(t) = total mass flowrate at inlet of up

stream compressible volume, g/s 
mt(z,t) = local instantaneous total mass 

flowrate of fluid, g/s 
mt* = instantaneous nonfluctuating total 

mass flowrate of fluid leaving two-phase 
region relative to moving boundary of the 
two-phase region, g/s 

Nc, Ni = dimensionless numbers, equation 
(3D 

No = dimensionless number, equation (30) 
P = inside perimeter of tube, m 
p = spatial mean system pressure, KN/m2 

Pi = pressure upstream of inlet throttling 
valve, KN/m2 

p0 = pressure downstream of outlet throttl
ing valve, KN/m2 

S = Laplace variable, s - 1 

T0 = temperature of subcooled liquid at the 
outlet, °C 

t = time, s 
t* = dimensionless time 
Vs = volume of vapor upstream of two-phase 

region, m3 

V = (Vs + Atasrj), m3 

o>n = natural angular frequency, radians/s 
<i)n* = dimensionless natural angular fre

quency 
x = nonfluctuating flow quality 
afo = nonfluctuating flow quality at z = 0 
z = spatial co-ordinate in the axial direction, 

7: 

3 = area mean void fraction (nonfluct
uating) 

, = system mean void fraction (nonfluct
uating) 

dp' 

dp 
, equation (7), g/m-KN 

rj = steady-state position of the effective 
point of complete condensation, m, equa
tion (13) rj(t) = nonfluctuating effective 
point of complete condensation, m 

p = density of saturated liquid, Kg/m3 

p' = density of saturated vapor, Kg/m3 

pa' — density of saturated vapor at the aver
age pressure across the upstream throttle 
valve, Kg/m3 

TC = time constant of condensing flow sys
t e m ^ 

Note: Unless otherwise indicated, barred (-) 
symbol of quantities generally refer to 
nonfluctuating quantities in reference to 
random fluctuations. Also, thermodynamic 
properties are assumed to be nonfluct
uating. However, in order to simplify the 
notation, no bar (-) has been indicated on 
these quantities. 
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to be maintained a little longer than what it would be without the 
inertia, so that the effective point of complete condensation will move 
further downstream than normal. As a result of the additional 
downstream motion of the effective point of complete condensation, 
the overall heat transfer area available for condensation will increase 
further, which in turn causes a larger increase in the condensation rate. 
Since the initial increase in the system pressure earlier would have 
caused a reduction in the inlet vapor flowrate from the high pressure 
reservoir, the condensation rate would temporarily be greater than 
the inlet vapor flowrate. This would result in a depressurization within 
the two-phase region, and hence within the upstream vapor volume 
as well. 

The system depressurization will cause a reversal of the previously 
described phenomenon and the entire process will be repeated in a 
cyclical manner. 

If conditions are right, it is possible that the initiated oscillations 
will grow in magnitude, becoming either unbounded or converge to 
a type of limit cycle. An unstable linear system would yield unbounded 
flow oscillations, but non-linear effects such as the downstream 
throttling would be responsible for limiting the amplitude of the os
cillations. 

If the above discussion is accurate, then it is apparent that the 
condenser heat transfer, liquid-vapor density ratio, vapor com
pressibility, downstream liquid inertia, upstream vapor volume, and 
upstream and downstream throttling would seem to be the dominant 
physical parameters responsible for the oscillatory behavior of the 
condensing flow system. Clearly the various processes that seem to 
be operating to produce the observed oscillatory phenomenon must 
be taking place at proper times and phase shifts such that energy is 
supplied to the system at the right time and phase to overcome the 
various damping or viscous effects, otherwise the large oscillations 
could not be sustained. 

In concluding this section, it should be pointed out that the above 
qualitative discussion is intended for the particular unstable flow 
phenomenon which is under consideration in this study, which may 
be only one of many possible flow instabilities encountered in con
densing flow systems. For instance, in parallel multi-tube condensers 
used in reheat systems associated with nuclear power plants, one of 
the reviewers of this paper indicated that condensation in the outlet 
header might drive the system unstable; thus the exit vapor volume, 
not considered in the present work, would be an important param
eter. 

M o d e l for U n s t a b l e F l o w P h e n o m e n o n 

In view of the principal physical mechanisms responsible for the 
unstable flow phenomenon discussed in the previous section, it be
comes necessary to couple the effects of the upstream vapor volume, 
downstream liquid inertia, and upstream and downstream throttling 
with the two-phase region. Figure 2 represents a schematic for such 
a flow system. 

In the formulation of the model for predicting the onset of the un
stable flow phenomenon, the concept of a system mean void fraction 
[5, 6] will be utilized to describe the primary physical mechanisms 
involved in the two-phase region. The nonfluctuating system mean 
void fraction, as, is expressed as 

1 / • » ) 
0Ls(t)=— I aa(z,t)dz (1) 

rj(t) Jz=o 

where aa(z, t) is the local area mean void fraction. 
Together with the concept of a system mean void fraction, the 

model will be formulated around the conservation of mass and energy 
principles applied to the various regions in the condenser. Both the 
effects of compressibility of vapor and the inertia of liquid will be 
incorporated into the formulation. Since it is proposed to study the 
onset of unstable flow phenomenon in the absence of any externally 
forced flow changes, care will have to be taken such that the system 
is allowed to close on itself and be responsive to any feedback ef
fects. 

Two-Phase Region. The condensing flow system model for this 
region will be formulated around the following simplifications. 

1 The system mean void fraction is assumed to be invariant with 
time. 

2 The random fluctuations due to the stochastic nature of the 
two-phase flow process are assumed not to influence the deterministic 
transients. 

3 Viscous dissipation, longitudinal heat conduction and changes 
in kinetic energy are neglected. 

4 The specific enthalpies and the density of the liquid are as
sumed to be the saturated properties, independent of both axial po
sition and time, and evaluated at the time averaged mean system 
pressure. 

5 The density of the vapor phase is assumed to be a function of 
mean system pressure, which is allowed to vary with time. 

6 The spatially averaged heat flux, for the entire two-phase region, 
is assumed to be independent of time. 

Conservation of Mass and Energy. The conservation of mass 
principle, simultaneously applied to the liquid and vapor in the 
two-phase region can be expressed as 

d r*(t) _ _ _ 
— I [p(l-aa) +p'aa]Atdz = mt(z,t)z=o-mt* (2) 
at «/z=o 

The conservation of energy principle simultaneously applied to the 
liquid and vapor in the two-phase region can be expressed as 

d pvC) 
— I [ph(l - aa) + p'h'aa]Atdz 
dt Jz=o 

LPdz + {[h(l -x)+ h'x]mt(z, t)}z=0 ~ hmt* (3) 
z=0 

The enthalpy rather than the internal energy is involved as a conse
quence of the flow work at the inlet and outlet, and, as a consequence 
of the boundary work which exists because the system boundary is 
moving with time. It is also assumed that slight changes in the system 
energy, due to changes in the system pressure, are small in comparison 
to each one of the individual terms on the right-hand side of the above 
equation. 

Combined Conservation of Mass and Energy. Equations (2) and 
(3) along with equation (1), assumptions (1, 4) and (5), and an inlet 
flow quality of unity, yield after rearrangement 

drjit) dp' 
Atp'(h' - h)as - ^ + At(h' - h)S.m ~ 

dt dt 

= ~ f<,Pv(t) + (h' - h)mt(z, t)z=0 (4) 

This equation, in the absence of compressibility effects, reduces 
to equation (7) of reference [5], which is the incompressible form of 
the governing differential equation for the effective point of complete 
condensation. 

Ups t ream Vapor Region. The upstream vapor region, as de
picted in Fig. 2, represents the volume of vapor upstream of the 
two-phase region and downstream of the throttling valve. For sim
plicity, this vapor is assumed to be saturated and at the mean con
denser pressure, p . Also, it is assumed to occupy a constant volume, 
Vs, throughout which the density, p', is uniform but time varying. 
These assumptions also imply that any pressure drop in this vapor 
region is negligible, except across the inlet throttling valve. 

Conservation of Mass. The conservation of mass principle when 
applied to the upstream vapor region yields 

dp' 
Vs—-- = ms{t) -mt(z, t ) 2 = 0 (5) 

dt 

Pressure Drop Across the Inlet Throttling Valve. The vapor flows 
into the upstream vapor region from a vapor source2 after flowing 
across a throttling valve (see Fig. 2). Therefore, the pressure drop 
across the valve can be expressed as3 

2 In the present work the vapor source is the high pressure reservoir (see Fig. 
3 of reference [5]). 

3 Assuming that the flow is not choked. 
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Pi -pit) = 
Pa'At 

;rn.Ht) (6) 

where p; is invariant with time. 
Compressibility of Vapor. For small changes in the mean con

denser pressure, p , the vapor density p' can be related to it by the 
equation of state 

dp' 

dt 
7 

dp 

dt 
(7) 

Subcooled Liquid Region. With reference again to Fig. 2, the 
subcooled liquid region is represented by rjit) <z < L. For simplicity, 
it will be assumed that the density of liquid in the subcooled region 
is the same as that of saturated liquid. 

Conservation of Mass. Applying the conservation of mass prin
ciple to the subcooled region yields 

drjit) 
-pAt 

dt 
:mt* •mi.it) (8) 

Pressure Drop in the Subcooled Liquid Region. Both viscous and 
inertia effects are assumed to exist in the subcooled liquid region at 
the condenser outlet. The total pressure drop can be expressed as the 
sum of the viscous pressure drop and the inertia pressure drop. 
Therefore, 

pit) - p 0 = —T7"*z,2(t) + 
pAt

2 

L-vit) 

At 

dmr.ni 

dt 
(9) 

where the outlet pressure, p 0 , is invariant with time. A detailed der
ivation of equation (9) which is based upon the application of the 
momentum principle is given in reference [8]. 

Combined Condenser Flow System Equations. The governing 
differential equations for each one of the regions can now be com
bined. Equation (2), together with assumptions (1, 4) and (5), and 
equations (5) and (8) can be combined to yield the conservation of 
mass equation for the whole condenser; thus 

mi.it) = m„(t) + (p - p')Ata, ^ - |V. + Atasrjit))^f (10) 
dt dt 

Also, substituting equation (5) into equation (4) leads to 

drjit) r 
— — + — 1j(t): 

dt TC 

msjt) 

p'asAt 

Vs + Atas-nit) 

Atasp' 

dp^ 

dt 
(11) 

(12) 

where TC is the condenser system time constant [5] given by 

Atasp'ih' - h) 
Tc = = 

Simplification and Linearization of the Governing Equations. 
The objective of the formulation being developed here is to predict 
the onset of the particular condensing flow system instability under 
consideration. This can be done first by linearizing the system of 
equations that were derived in the last section, and then combining 
them in an effort to get a single differential equation governing the 
outlet flowrate of subcooled liquid. The resulting differential equation 
can then be investigated for the conditions leading to the onset of 
instabilities. In keeping with these objectives, the following simpli
fications will be introduced into the governing equations. 

1 In addition to the various thermodynamic properties that were 
considered time invariant, the density p' of vapor, wherever it appears 
in the coefficient of derivative terms, will be assumed to be time in
variant and evaluated at the spatial and time averaged system pres
sure. 

2 The effective point of complete condensation, rjit), which ap
pears in the coefficient of the derivative idp'/dt) as well as in the 
coefficient of (dmr./dt) in equation (9) will be assumed to be constant 
and evaluated at its mean position, rj, where 

»? = - ! fo( t ) ]n : + [Vit)]r, (13) 

3 The nonlinear flow resistances both at the inlet to the vapor 
region and at the outlet of the subcooled liquid region will be linear

ized, by assuming constant local slopes, fe,-* and k0*, respectively, of 
the single phase, steady state pressure drop versus flowrate curve at 
the operating point. Therefore, equations (6) and (9), together with 
simplification 2 above can be written as 

Pi -pit) =ki*msit) + c; 

and 

Pit) -p0 = k0*mi.m + c0 + 
L0 dmun 

At dt 

where ft,* and k0* are given by 

2k; 
h*-

Pa'At* 
m; ko* •• 

Zfc0 

pAt' 

(14) 

(15) 

(16) 

Using the above simplifications, it is now possible to obtain a lin
earized system of equations. Differentiating equation (15) with respect 
to time and substituting into equation (7) yields 

dp' 

dt 
7 

dmr.m L0d
2mnt) 

k„*—-— + 
dt At dt2 

Equations (14) and (15) can be combined to yield 

Ln dmj <.t) 
iPi ~ Po) = ki*msit) + k0*mLit) + -f—f- + c 

At dt 

where c = (c; + c0) will be assumed to be a constant, since the objective 
here is to predict the onset of an unstable flow phenomenon to a slight 
disturbance about the mean operating flowrate. 

(17) 

(18) 

Also, ipi — Po) = constant (19) 

The linearized form of equations (10) and (11) with equations 
(17-19) form a complete set of linear equations. They can be combined 
to yield a single differential equation governing the outlet liquid 
flowrate. This can be achieved once ms it) and rjit) are eliminated from 
the above set of linear equations. The resulting differential equation 
will be of third order. However, if one also resorts to nondimension-
alization, the resulting differential equation becomes 

dsm*i . d2mL *dmL „ . 

dt*2 dt* 
(20) 

where mL* = [mi.it)lm\; t* = ithc)ip'lp) and the various coefficients 
are given by the following equations. 

(21) 

(22) 

(23) 

(24) 

ax* 
2 1 

T 2 
*C 

[V'Ti.] 
1 At J 

+ V'yk0* 

and 

bo*-
JPi -p0)-c 

mki* 
(25) 

Prediction of the Onset of Unstable Flow Phenomenon. An 
examination of equation (20) indicates that for a fixed pressure drop, 
iPi — Po), across the condensing flow system, the forcing function is 
a constant. The response of the dependent variable in the equation 
to any momentary disturbance could either decay with time or grow 
and become unbounded. In between these two limits the system could, 
if the values of the parameters are just right, go into an oscillatory 
mode. 

To investigate the conditions for marginal stability, a Laplace 
transform of equation (20) yields the characteristic equation in the 
Laplace variable 'S' , which is of third order and is given by 

a0*S3 + o i*S 2 + a2*S + a3* = 0 (26) 

An examination of the roots of the above characteristic equation will 
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give the criterion for the stability of the system [7]. An application 
of the Routh criterion [7] to equation (26) yields 

ai*a2* - a0*a3* > 0 for stability (27) 

Specifically, the equality sign in the above equation yields the con
dition for marginal stability. Under that condition the associated 
dimensionless frequency is given by 

. £21 . 0 2 * 

aa* 
(28) 

where the dimensionless and dimensional natural frequencies of the 
system are related by 

Tc Un (29) 

Equations (21-24) can be substituted into equations (27) and (28) 
to obtain the condition for marginal stability and the associated fre
quency, respectively, in terms of the various system parameters. 
However, for the conditions obtainable in the experimental program 
of this current study, an examination of the various coefficients given 
by equations (21-24) revealed that in the coefficient ai*, the last two 
terms on the right-hand side of equation (23) were negligible in 
comparison to the first two terms. Also, for low outlet throttling and 
reasonably high throttling at inlet, the ratio (k0*/ki*) « 1.0. Therefore 
it can be neglected in equation (24) expressing the coefficient 03*. All 
of the terms in equation (22) were found to be of the same order of 
magnitude; therefore they are all retained. With the above-mentioned 
approximations applied to various coefficients, the criterion for the 
stability of the condensing flow system can be expressed as 

where 

and 

iVc 

N0--

{Nc + Ni}>N0 

Tc \ iAtk0*Tt 

V'yki 

1 
— WP) 

(30) 

(31) 

(32) 
\(plp')(k0*lki*) + 1 

The associated natural frequency for the marginal stability is given 
by 

kg* P' 

Hi* P. V'yU 

1/2 
(33) 

Experimental Observations 
The objective of the experimental program was to verify the sta

bility criterion developed in the previous section. 
Experimental Apparatus. The experimental apparatus involved 

in this study, except for a few modifications, is the same as described 
in reference [5]. The basic elements of this experimental apparatus 
are a high pressure reservoir, a tube in tube type horizontal condenser, 
and a low pressure reservoir. Vapor is generated in the high pressure 
reservoir. A regulating valve located at the outlet of this reservoir 
controls the flow rate of vapor that is supplied to the tube side of the 
condenser. The subcooled liquid at the outlet of the condenser is then 
collected and stored in the low pressure reservoir. A throttling valve 
was located between the outlet of the condenser and the inlet to the 
low pressure reservoir. Since one of the objectives of the overall ex
perimental program involved a visual observation of the dynamic 
characteristics of two-phase condensing flow, the present tests were 
carried out on an all-glass concentric-tube condenser test section. 

The other modifications in the experimental schematic shown in 
Pig. 3 of reference [5] involved removal of the liquid turbine flow
meters and check valves at the downstream end of the condenser. This 
was done to minimize the flow resistance in the subcooled liquid region 
and to concentrate the remaining flow resistance at the regulating 
valve before entering the low pressure reservoir. For certain operating 
conditions described later in this section, when it was necessary to 

increase the flow resistance in the subcooled liquid region, it was 
achieved by throttling the flow at this regulating valve. The valve 
coefficient of this regulating valve, for various angular positions of 
opening, was obtained by carefully conducted tests using single phase 
liquid freon-12. 

There was also a provision for varying the length of the piping be
tween the outlet of the condenser and the inlet of the low pressure 
reservoir. This made it possible to vary the outlet liquid inertia effects. 
To study the effects due to the upstream compressible volume, pro
vision was made for introducing known compressible volumes into 
the piping between the high pressure reservoir and the inlet of the 
two-phase region. These compressible volumes were electrically 
heated to prevent condensation of vapor inside them. Further details 
about the experimental apparatus are given in reference [8]. 

Procedure for Taking Data. The experimental procedure that 
was followed for verifying the stability criterion developed earlier 
consisted of establishing obtainable operating conditions which 
represent a suitable point within the unstable domain of Fig. 3. System 
instability was indicated by the initiation, growth and the subsequent 
self-sustained limit cycle oscillations. The next step involved intro
ducing a change in the operating conditions which would make the 
system go stable. System stability was indicated by a vanishing of the 
sustained oscillatory behavior and the reappearance of the inherent 
random fluctuations. 

Theoretically, it is possible to establish unstable operation and the 
subsequent means of stabilizing the system by varying any one or 
more parameters represented in equation (30). However, it is easy to 
recognize that the variation of some of the parameters is not conve
niently realizable in actual practice. Therefore, a test procedure was 
devised which made it possible to verify the stability criterion in a 
reasonably convenient manner. 

The procedure consisted of keeping the outlet throttling valve 
completely open, and slowly varying the inlet vapor flowrate while 
simultaneously monitoring the pressure drop across the outlet flow 
resistance, the inlet vapor flowrate, the pressure in the upstream 
compressible volume and the pressure at inlet to the two-phase region. 
The initial operating point was then set such that the instability was 
clearly established. After operating for a while in this mode, the 
downstream throttling valve in the subcooled liquid region was 
gradually closed. As the flow resistance increased, it eventually re
sulted in a gradual attenuation in the amplitude of the self-sustained 

Condensing Flow Refi"1gerant-12 

Test Conditions (Average Values) 

p = 640.0 kN/m\ 1.0, r r * 1.06 s 
- 9 

a = 0 . 8 3 , d = 0.762 cm, f = 7.56 kW/m 
3 9 

1W 
657 
906 
345 

L0, „ 
~BT7 

6.48 
6.40 

14.81 

Predicted Stabi l i ty Boundary 

Equation (30) , (k£/kf) = 7.85 x 10"5 

Equation (30) , (k j /k t ) = 8.53 x I0"4 

S, g/s 

T7TT 
2.73 
2.85 
3.2 

Stable 

Fig. 3 Comparison of experimental and theoretical stability boundaries. (The 
data points represent the conditions at which the sustained oscillatory behavior 
was suppressed and the system reverted back to random fluctuations.) 
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oscillations until a further increase in resistance would suppress the 
sustained oscillatory behavior, causing the oscillations to revert back 
to typical inherent random fluctuations. This final position of the 
outlet throttling valve was recorded making it possible to determine 
a quantitative value for the flow resistance from the calibration curve 
obtained earlier. The operating conditions at which the instability 
disappeared were used to locate a position- on the stability plot of Fig. 
3. An estimate of the experimental uncertainty of the data is of the 
order of ±10 percent. The initial operating conditions for each of the 
data points shown on the figure were established by varying the inlet 
throttling between the high pressure reservoir and the upstream vapor 
volume, the volume of the upstream vapor region and the liquid in
ertia length. 

It is important to point out that after the transition from unstable 

Refr1gerant-12 

» 6.567 in, p * 649.9 

LQ - 15.189 m, p ' 684.1 *£ 

(with Increasing frequency) 

1217,^906, 657, 345 

0.2 0.3 0.4 0.5 

Measured Frequency, Hz 

Fig. 4 Comparison of measured and predicted frequency of self-sustained 
oscillations 

to stable operation had been achieved by increasing the throttling at 
the outlet, the throttling was gradually decreased until the instability 
reappeared. However, as might be expected, the onset of the insta
bility did not appear at the same valve setting where the system had 
been stabilized earlier, but had to be opened further before the system 
became unstable. This indicated a type of hysteresis effect. However, 
if the system was externally disturbed with the system operating at 
the stability boundary, the unstable oscillatory behavior returned. 
A quick change in the inlet vapor flowrate followed by returning it to 
its original value was employed as the external disturbance. 

Comparison of Theoretical Results with Experimental Data. 
The experimental data indicating the onset of unstable flow phe
nomenon or the transition between the unstable and stable operation 
is shown by the data points in Fig. 3. Also plotted on the same graph 
is the simplified stability criterion given by equation (30). This is 
shown by the solid straight line that represents the boundary between 
the stable and unstable domains. The intercept 'N0' on the abscissa 
and the ordinate in Fig. 3 is a function of the liquid/vapor density ratio 
of the fluid and the ratio of the outlet to the inlet throttling, as rep
resented by the right-hand side of equation (30). For each experi
mental data point, the value of this intercept will change slightly 
which shifts the stability boundary a little. For the ranges of density 
ratio and the ratio of outlet and inlet throttling involved in the ex
perimental data presented here; the shift in the value of W0 ' is very 
small; the entire range of values is covered by the zone between the 
dashed and the solid line. 

A comparison of the experimental data and theoretical stability 
boundary indicates reasonable agreement, especially if the uncertainty 
in pinpointing the exact position at which the system becomes stable 
is incorporated into the experimental data. This agreement lends 
considerable confidence that the physical mechanisms included in 
the stability model are indeed the principal physical mechanisms 
governing the particular condensing flow system instability presented 
in this paper. 

Another important check on the capability of the proposed model 
to predict the observed phenomenon is through the comparison of the 
predicted frequency at the marginal stability conditions with the 
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Ftg. 5 Predicted response of system mean void fraction model with non-
linearities 
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frequency of the self-sustained oscillations obtained experimentally. 
Such a comparison is shown in Fig. 4. Again, the agreement between 
the predicted and experimental values is quite good. An examination 
of the expression for the frequency, a>„, given by equation (33), indi
cates the presence of the important physical parameters which formed 
the basis of the analysis presented in the previous section, further 
confirming the validity of the present model. 

Nonlinear Analysis 
The linearized analysis presented earlier yields the criterion for the 

stability of the condensing flow system for the specific instability that 
is under investigation in this paper. However, it cannot give any am
plitude information or growth behavior of the oscillations including 
the existence of a limit-cycle. This information can be obtained only 
if the system of nonlinear equations are solved without any linearizing 
assumptions. Specifically the system of nonlinear equations repre
sented by equations (5-7, 9-11) and (19) need to be solved simulta
neously. A digital computer simulation program which enables a user 
to simulate a system in the same manner as used by analog computer 
programmers, together with a fourth order Runge-Kutta integration 
technique, was used to solve the above set. For further details see 
reference [8]. 

The numerical results of solving the system of equations clearly 
indicated the existence of a type of limit cycle within the unstable 
domain of Fig. 3. A typical numerical solution corresponding to the 
point V in Fig. 3 is shown in Fig. 5. The existence of a limit cycle is 
clearly discernible and is similar to that obtained experimentally. The 
peak-to-peak amplitude of the oscillations shown in Fig. 5 (+9.98 to 
—4.69 g/s) compared fairly well with the experimentally obtained limit 
cycle oscillations (+6.95 to —1.36 g/s) for the same conditions. When 
the initial conditions on these numerical solutions were altered to 
impart a sizable value to the initial derivative of outlet flowrate the 
resulting limit cycle was again similar to the one shown in Fig. 5. The 
only difference was that the time required to reach the limit was 
considerably reduced. It might be useful to note that the limit cycle 
frequency may not necessarily be the same as the small signal oscil
lation frequency. The fact that it is indicates that the nonlinearity is 
"soft;" it is just strong enough to stabilize the oscillation at amplitudes 
large relative to the steady state. Also, it seems that there is a little 
more damping in the system than has been accounted for in the model. 
A possible source could be a finite, transient two-phase pressure drop, 
which has not been included in the present model. 

When the value of the outlet flow resistance was increased, the 
operating conditions shifted from the position 'x' on the stability plot 
of Fig. 3 to the point designated by 'y'. Since this latter position is in 
the stable domain, the numerical solution to the nonlinear equations 
for this condition showed a decaying oscillatory response. 

S u m m a r y and Conc lus ions 
The studies presented in this paper were primarily concerned with 

an experimental and theoretical investigation of an unstable con
densing flow phonomenon that leads to a sustained limit-cycle type 

of oscillations of large amplitude, which under certain conditions can 
involve flow reversals. This unstable behavior normally existed for 
conditions of low outlet throttling. 

Several physical mechanisms for the occurrence of this type of in
stability were established. They are the condenser heat transfer, 
vapor-liquid density ratio, downstream inertia, upstream vapor 
compressibility, upstream vapor volume, and downstream and up
stream flow resistances. A particular interaction between these 
physical quantities leads to the unstable behavior. A linearized 
analysis based on the system mean void fraction model successfully 
predicted the experimentally observed stability boundary. The results 
were presented in the form of a two-dimensional stability plot. 

Upstream compressible volume and downstream inertia appear 
to be the dominant energy storage mechanisms for the self-sustained 
limit cycle oscillations. The major transient characteristics of these 
experimentally observed oscillations were predicted by the system 
mean void fraction model with nonlinear elements. 
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Nucleate Boiling Performance of 
Refrigerants and Refrigerant-Oil 
Mixtures 
Current and previous studies by the authors and others have shown shown that the carry
over of oil in refrigeration systems can have a significant influence on the boiling perfor
mance in the evaporator of refrigeration systems. This investigation was conducted pri
marily to develop a general correlation equation for predicting the heat transfer coeffi
cient for refrigerants and refrigerant-oil mixtures under pool boiling conditions. Experi
mental results were obtained to establish the validity of the correlation equation. 

Introduction 
Many water chillers of the centrifugal type have evaporators uti

lizing a flooded mode of operation whereby the water is circulated 
through the tubes and refrigerant evaporates on the shell side of the 
tubes. Many of the refrigerants in common use today are miscible in 
lubricant oil. As a result, for systems with oil-lubricated compressors, 
some amount of oil is transported through the system. The fluid 
boiling on the outside of the tubes in the evaporator is a refrigerant-oil 
mixture. 

Boiling heat transfer has been studied utilizing many techniques. 
These studies have indicated that several variables are important in 
nucleate boiling such as pressure, fluid properties, surface condition, 
boiling temperature, type and amount of impurities, and others. 
Experimental observations have shown that changes in magnitude 
of these properties and conditions significantly affect pool boiling heat 
transfer. 

The effect of oil in refrigerants on pool boiling heat flux was in
vestigated by Stephan [1] and Dougherty and Sauer [2]. The results 
demonstrated that the boiling temperature of the oil-refrigerant 
mixture is higher than that for the pure refrigerant at the same 
pressure. In the current study, saturation temperature at the higher 
oil concentration was 2°C above that for the pure refrigerant. Other 
thermodynamic properties of the refrigerant are significantly changed 
by the addition of oil. Both viscosity and surface tension are increased 
when oil goes into solution with the refrigerant. As a result of these 
and very possibly other changes, the boiling heat transfer character
istics of refrigerant-oil mixtures are significantly different from the 
boiling performance of the pure refrigerant. Therefore, a refriger
ant-oil mixture could possibly either increase or decrease heat transfer 
performance as a result of the influence oil has on the thermophysical 
properties of the refrigerant. The refrigerants completely miscible 
in oil, such as R-12 and R- l l , generally have shown decreased heat 
transfer performance with increasing percentage of oil in the mixture. 
The only aberation in this rather systematic reduction occurs at oil 
concentrations of 3 percent or less. In some cases, the foaming action 
of the oil may actually increase the heat transfer coefficient as oil 
concentration goes from 0 to 3 percent. For oil below 3 percent by 
weight in the mixture, this change should be small enough that design 
or performance calculations based on oil-free heat transfer data can 
be made without serious errors. 

Many papers have been published dealing with the boiling of 
mixtures and no attempt has been made herein to provide a review 
of other than the most directly pertinent articles. 

Existing Predictive Equations 
As a result of the lack of complete understanding of the nucleate 

boiling mechanism and the surface and geometric effects on nucleate 
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boiling, reliable generalized correlations have not yet been found. 
Table 1 provides a listing of some of the existing, commonly used, 
correlations for pool nucleate boiling of single component fluids. When 
comparisons are made with available experimental data on the boiling 
of refrigerants, each of these predictive equations leaves something 
to be desired. 

Development of Correlation 
The principal assumptions made in the present study are 
1 The system contains only pure, air-free, refrigerant or oil-re

frigerant mixture. The properties of the liquid are taken as the 
properties of the pure refrigerant or of the oil-refrigerant mixture 
only. 

2 The main heat transfer resistance is concentrated in a thin 
liquid layer, adjacent to the heating surface, in which turbulence is 
caused by the rapid formation of vapor bubbles; therefore, the height 
of the liquid in the container is not an independent variable. 

3 The mixture of oil and pure refrigerant is an ideal solution be
cause no chemical reaction occurs during mixing and the mixture is 
homogeneous. 

As listed in the previous sections, attempts have been made by 
various investigators to correlate pool boiling heat transfer data. The 
boiling mechanism is so complicated that a pure analytical expression 
for the heat transfer, derived from basic theoretical relations, has not 
yet been obtained. A semiempirical method employing dimensional 
analysis proved to be the most satisfactory approach. This method 
required the proper selection of all variables that affect the nucleate 
boiling performance. 

Nucleate boiling starts when the temperature of the surface exceeds 
the saturation temperature by a few degrees. Adjacent to the surface 
a thin layer of superheated liquid is formed in which bubbles nucleate 
and grow from some preferred spots on the surface. It has been found 
previously that in nucleate boiling at low heat flux density, both the 
temperature of the surface and the heat transfer rate vary over the 
heated area. The values which are usually reported are average 
values. 

The most important variable for derivation of nucleate boiling heat 
transfer correlation may be taken as the heat flux (Q/A) and the av
erage temperature difference between the surface and the liquid. 
These two variables are related by the defining equation for the heat 
transfer coefficient, that is h = Q/AAT. By the assumption that the 
main heat transfer resistance is concentrated in a thin liquid layer 
adjacent to the heating surface in which turbulence is caused by the 
rapid formation of vapor bubbles, the height of the liquid in the 
container is not a primary variable, but the liquid properties should 
be the controlled variables. However, for a large flooded evaporator 
there may be a significant "submergence effect" resulting from the 
liquid head on the refrigerant evaporation process. For example, with 
R- l l , a 2 ft column of liquid generates a static pressure of 1.33 psi and 
an increase in boiling point, some 5°C higher than at the liquid sur-
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face. For R-12 the increase would be less than 1°C. In operating sys
tems, this submergence effect is significantly reduced since the boiling 
refrigerant is full of bubbles and therefore at some density less than 
for liquid alone. The liquid properties that are the importance vari
ables in nucleate boiling heat transfer are all dependent upon the 
boiling temperature and boiling pressure. In nucleate boiling, bubbles 
are created by the expansion of entrapped refrigerant vapor. There
fore, the vapor density of the refrigerant pv and density of the liquid 
mixture PL are other variables. The degree of turbulence, caused by 
the bubble formation, is considered to depend on the liquid viscosity 
fiL and the diameter of bubbles departing from the surface depends 
on specific heat, heat flux, thermal conductivity of the liquid, liquid 
density, vapor density, latent heat of vaporization, thermal diffusivity 
and the time needed for a bubble to reach the break-away diameter. 
But the time needed for a bubble to reach this diameter depends on 
the heat flux (i.e., as heat flux increases, the time decreases). At higher 
heat flux the surface tension is not an important variable in forming 
a bubble. As reported by Leppert and Pitts [14], several investigators 
found that bubble growth is limited by the rate of heat diffusion to 
the interface, and that "the effects of liquid inertia and surface tension 
are small and can be neglected." Therefore, surface tension has not 
been included in the derivation of the equations. 

Based on the correlation of the model with experimental data, the 
most important variable needed to extend the results to mixtures 

proved the volume fraction of pure liquid refrigerant 0/. It is defined 
as (p/ = Vf/(Vf + V0) where Vf = volume of pure refrigerant; V0 = 
volume of pure liquid oil. This variable is used to account for the 
quantities of pure refrigerant in contact with the heating surface when 
compared with the total refrigerant-oil mixture. Now one can conclude 
that the heat transfer coefficient depends on Q/A or AT, h/g, fi^, Ci, 
^L, Pv, PL, TL, P, and 4>f. These variables are then assumed to be re
lated by 

h = alX^iXiMXa]"3. • . [X„]«» (10) 

The X's can be dimensional groups or dimensionless groups, such 
as Q/A, jiLCL/kL, etc. 

The constants of equation (10) can be determined by changing the 
equation into the multiple linear regression model as 

Y = A0+ T.AjXj (11) 

The coefficients of equation (11) can be determined by using the 
least-squares technique. This technique is used for deriving a model 
that "best fits" a set of experimental data. This means that the error 
function which relates the differences between the model and the data 
is minimized. The error function to be minimized is the sum of the 
squares of the differences between each data point and the value 
predicted by the model. 

. N o m e n c l a t u r e -

A = area 
B = proportionality constant in Mikic-Roh

senow equation, dimensionless 
BL = proportionality constant in Levy 

equation, dimensionless 
C = specific heat 
Csf = proportionality constant in Rohsenow 

equation, dimensionless 
D = characteristic dimension of heated sur

face 
Dd — diameter of a bubble departing from a 

horizontal surface 
g = earth's gravitational acceleration 
go = conversion factor (gravitational con

stant) 
G = mass velocity of liquid, defined for Gil-

VpL 

mour equation as 
Apv 

h = heat transfer coefficient 
hfg = latent heat of vaporization 
k = thermal conductivity 
m = numerical exponent in Mikic-Rohsenow 

equation, dimensionless 
P = pressure 
Q = heat transfer rate 
q = heat flux density 
t = time 
T = temperature 
TL = saturation temperature of boiling 

liquid 
AT = temperature difference between test 

surface and bulk liquid, Tw — TL 
v = vapor rate 
W = weight fraction 
a = thermal diffusivity 

fi = viscosity 
v = kinematic viscosity 
4> = function defined in Mikic-Rohsenow 

equation 
<j>f = volume fraction of pure refrigerant 
$ = proportionality constant of Gilmour 

equation, dimensionless 
PL = saturated liquid density 
pv = saturated vapor density 
a = surface tension 

Subscripts 

/ = fluid 
L = liquid 
m = mixture 
o = oil 
V = vapor 
w = wall 
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The resulting equation, developed using experimental data from 
both this and other investigations [1, 2,12], proposed for use in pre
dicting the boiling heat transfer coefficient of refrigerant-oil mixtures, 

Table 2 Viscosities of refrigerant oils 

ft = 0.05253 
(Q/A)D 

Lhfg 

ULCL 

X [P]1-695 D 

.0.01588 */ EL 
pvl 

(12) 

where h = heat transfer coefficient, W/m2 — K, Q = heat transfer rate, 
W, A = surface area, m2, D = characteristic dimension of heated 
surface, m, HL - viscosity of saturated liquid, g/m - s, hfg = latent 
heat of vaporization, W - s/g, CL = specific heat of liquid, kL = 
thermal conductivity of liquid, W/m - K, P = pressure, atmospheres, 
(f> = volume fraction of pure refrigerant, dimensionless, PL = liquid 
density, g/cm3, and pv = vapor density, g/cm3. 

Experimental Investigation 
The experimental equipment used in this investigation consisted 

principally of five basic systems: (1) boiling/condensing vessel system, 
(2) test fluid and cylindrical test element, (3) power supply, (4) aux
iliary refrigeration unit for condenser, and (5) instrumentation and 
control system. Figure 1 shows schematically the arrangement of the 
various components. The experimental apparatus has been designed 
and constructed earlier by Dougherty and Sauer [2]. Tests were 
conducted with type L commercial copper tubing having outside di
ameters of 0.625, 0.875, and 1.125 inches. Heat transfer results were 
obtained at pressures of 1 and 2 atmospheres; and with refrigerant-oil 
compositions of 0, 5, and 10 percent oil by weight. These oils were all 
paraffin base, but with different viscosities. The corresponding des
ignations and viscosities are shown in Table 2. Data were taken with 
three types of refrigeration oil. The refrigerant was R- l l . 

The oil-refrigerant mixtures were prepared on a weight basis by 
weighing pre-calculated amounts of each pure component to give the 
required weight percent for the mixture. The volume fraction, 4>f, was 
determined from the weight percents by 

<l>f 
Wf/pf 

Pf Po 

Results 
Figures 2 and 3 present typical results of heat transfer coefficient 

versus heat flux density for oil-free refrigerant-11 in comparison with 
the results of Stephan [1], Rohsenow [4], Forster and Zuber [8], 
McNeilly [3], Gilmour [5], Borishanskiy and Minchenko [7], Kuta-
teladze [6], Dougherty and Sauer [2], and the proposed predictive 
equation. 

As can be seen from both figures, the current experimental results 
fall within the range of the various predictive equations. Of these 
equations, the proposed predictive equation appears to agree best with 
the experimental data of Dougherty and Sauer and of Stephan. No 
predictive equations were proposed by these investigations for com
parison. 

Figure 4 indicates that the present predictive curve agrees very well 
with Stephan's data. Refrigerant-12 data fall close to the predictive 
line for pressures of 1 atmosphere, 2 atmospheres and 3 atmospheres. 
Equation (12) can predict Stephan's data [12] with errors smaller than 
16 percent. 

Figures 5-9 show the effect of oil concentration and pressure on 
R- l l boiling. It can be seen that when oil concentration increases the 
heat transfer coefficient decreases for all three types of oil (3GS, 4GS, 
and 5GS). These results are in good agreement with those obtained 
by Stephan [1], Dougherty and Sauer [2], and Chaddock [13] for oil 
concentrations higher than 3 percent. It was also noted that heat 
transfer coefficient increases with increasing saturation pressure. 

The proposed equation (12) agrees very well with the current data 
for R- l l as well as with Stephan's data for oil-free refrigerants, R- l l , 
R-12, R-13, R-21, R-22, R-113, R-114, and ammonia, with errors 

oil designation viscosity 

3GS 
4GS 
5GS 

155 SUS/38°C 
290 SUS/38°C 
515 SUS/38°C 

VAPOR LINE 

R-12 CONDENSING 
UNIT 
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VACUUM PUMP 
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Fig. 1 Schematic of apparatus 
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Fig. 2 Comparison of several boiling correlations with experimental data 
for 11/8 in. o.d. tubing 
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Fig. 3 Comparison of several boiling correlations with experimental data 
for 5/o in. o.d. tubing 
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Fig. 5 Comparison of experimental data with proposed correlation for R-11 
and 3GS oil boiling from % in. o.d. tubing 
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Fig. 6 Comparison of experimental data with proposed correlation for R-11 
and 4GS oil boiling from % in. o.d. tubing 

smaller than 16 percent except for ammonia where disagreement was 
as high as 33 percent. 

However, since property data for refrigerant-oil mixtures is ex
tremely limited, a simpler equation was also developed which corre
lates the heat transfer coefficient with only three variables; Q/A, 4>f, 
andP: 

h = 6.17[Q/A]°-6B[0/]3-65P°-24 (13) 

where h = heat transfer coefficient, W/m2K, Q = heat transfer rate, 
W, A = surface area, m2, 0/ = volume fraction of pure refrigerant, 
dimensionless, P = boiling pressure, atmospheres. 

Equations (12) and (13) agree qualitatively with the experimental 
data: (1) h increases as P increases; (2) h decreases as n increases; (3) 
h increases as Q/A increases; (4) h slightly increases as D increases; 
and (5) h increases as <pf increases. 

Although surface roughness does not affect the boiling performance 
and should be included in this equation, there were not sufficient data 
for inclusion of this parameter of this time. 

Quantitatively, equation (12) agrees with the current data as fol
lows: (1) For Refrigerant R-11 with 0 percent oil, the maximum error 
is less than 17.7 percent; (2) for Refrigerant R-11 with 5 percent oil, 
the maximum error is less than 33 percent; (3) for Refrigerant R-11 
with 10 percent oil the maximum error increases to 43 percent— 
probably due to inaccuracies in predictive properties of the mixture. 
The simpler equation (13) actually yields better agreement at the high 
oil concentration (maximum error of 25 percent at 10 percent oil). This 
is believed due to lack of accurate property information for the mix
ture with high oil concentration. 

Conclusions and Recommendations 
In general, the nucleate boiling heat transfer coefficient increases 

with increasing pressure, but decreases with increasing oil concen-
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Fig. 7 Comparison of experimental data with proposed correlation for R-11 
and 5GS oil boiling from % in. o.d. tubing 
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Fig. 8 Comparison of experimental data with proposed correlation for R-11 
and 3GS oil boiling from % in. o.d. tubing 

7000 

5000 
4000 

3000 

o 
° 2000 
CM 

E 
5 

I000 

800 

600 
500 

350 

A-0%, I ATM 
a-5%, IATM 
O-l0%,IATM 

Fig. 9 Comparison of experimental data with proposed correlation for R-11 
and 5GS oil boiling from % In. o.d. tubing 

tration. For oil concentrations of 5 percent or greater, the heat transfer 
coefficient always decreases with increasing oil content, and for large 
oil concentrations (10 percent), the heat transfer coefficient is greatly 
reduced when compared with oil-free refrigerant. Experimental re
sults also show that the heat transfer coefficient h decreases with 
increasing viscosity of oil. The data for oil-free refrigerant R-11 agree 
very well with Stephan's data [12] and Dougherty-Sauer's [11], with 
the error being smaller than the uncertainty due to the instrumen
tation (19 percent). 

Equation (12) is recommended for prediction of boiling perfor
mance of refrigerant-oil mixtures when one knows the fluid proper
ties, the diameters of tubes, Q/A and 4>f- This equation agrees very 
well with existing data for the refrigerants. 
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Equation (13) can also be used to predict the heat transfer coeffi
cient. This equation requires only that Q/A, pressure and the volume 
fraction of refrigerant or percent of oil be known. 

More accurate fluid properties of mixtures, such as viscosity, 
density, thermal conductivity, and specific heat are needed before 
accurate prediction of thermal performance can be made. 

It should be noted that the results presented in this paper are for 
single, plain tubes. Heat transfer in typical flooded refrigerant 
evaporators is affected not only by nucleation but also by the con
nection of the upward flow of vapor through the tube bundle. Fur
thermore, since many present day R- l l evaporators used finned tubes, 
experimental work with such surfaces is continuing. 
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Anisotropic Conduction and Surface 
Radiation around a Hollow Cylinder 
An analytical expression is developed for the temperature distribution in the wall of a 
hollow cylinder radiantly heated externally in a circumferentially nonuniform manner. 
The solution includes two-dimensional anisotropic conduction within the wall, external 
radiation absorption and emission, and internal radiation heat transfer. Sample results 
are presented for a graphite-reinforced boom exposed to solar heating in space. 

I n t r o d u c t i o n 
The hollow cylinder and sphere are geometries for which exact 

solutions of the diffuse-walled enclosure problem are known [1]. It 
is of interest to know how simultaneous wall conduction and radiation 
affect the heat flux or temperature distribution in hollow cylinders 
or spheres. The hollow cylinder is particularly interesting, because 
space vehicle booms are often hollow cylinders made of carbon-rein
forced plastics. When such booms, sometimes of the order of 10 m in 
length, are exposed to solar heating from one side they may bow 
considerably unless circumferential wall conduction and internal 
radiation maintains minimal temperature differences across them. 
Such booms are often fabricated with fiber reinforcements running 
along surfaces of constant radius and separated in the radial direction. 
Since graphite reinforcement fibers are highly conducting, the boom 
walls conduct anisotropically, offering some resistance to conduction 
in the radial direction even though the wall thickness is small com
pared to the circumference. The radial resistance tends to make the 
cylinder wall somewhat more nonisothermal. 

Charnes and Raynor [2] and Nichols [3] considered the thin-walled 
cylinder with wall conduction, external radiation, and rotation but 
with no internal heat exchange. Nichols [3] and Hrycak [4] treated 
the sphere, with allowance for internal radiation. Sparrow and 
Krowech [5] considered the cylinder with external radiation, spike 
heat input at bases of connecting fins, and internal convection into 
an opaque fluid. Hrycak and Helgans [6] considered internal radiation 
and conduction for hollow thin walled cylinders of beryllium copper 
and accordingly neglected radial resistance to conduction. They for
mulated the internal radiation in terms of the black body radiosity 
oTi and so obtained a result valid only for perfectly black interior 
walls. The problem considered here is for two-dimensional conduction 
and internal radiation including interreflections from a nonblack 
wall. 

F o r m u l a t i o n 
The heat conduction equation for an anisotropic medium whose 

principal directions coincide with those of the cylindrical coordinate 
system is 

0: 
r dr dr} rb8\rb6) bz\ dzj 

(1) 

Due to a high absorption coefficient, that is, a radiation mean free path 
very short compared to the thickness 5 of the cylinder wall, the radi
ative transfer is considered to be a surface phenomenon affecting only 
the boundary condition on equation (1). On the exterior, at r = R + 
5/2 where R is the mean radius as shown in Fig. 1, the boundary con
dition is 

-kr 
<yr 
dr 

= (eaT*-, (2) 

where qe " is the external irradiation. On the interior, at r = fl-5/2, 

dT 
+kr 

dr 
• = c-o-r4 - onqr (3) 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 3, 1980. 

A reasonably general provision for the externally absorbed radiation 
aeqe~ is taken in the form of a Fourier series 

G* eqe /cedTo4 = 1 + £ a„ cosnB 
n=i 

where the coefficients an are found from 

z (••* cee 
in = ~ I — 

•K JO £eC T JO 
l d 0 - ~ cosnd dd 

(4) 

(5) 

(6) 

and <rTo4 is defined by requiring an = 0, so that 

o-T0
4 = — CTaeqe-d6 

iree Jo 

Equation (4) provides for any physically realistic symmetrical external 
heating. For example, if the external heating is provided by solar ir
radiation Gs cos /? cos 6 over the half cylinder —7r/2 < 6 < ir/2 by rays 
inclined at angle ir/2-/3 from the cylinder axis and if the solar ab
sorptivity aB is not a function of angle of incidence, there is found 

as Gs cos/3 

and 

ffTo4 = -

2 ( - l ) * + 1 

ai = ir/2, a2k = ^rrr^—7. 02*+i = 0, 
(2k)2 - 1 ' 

(6a) 

(5a) 

for k = 1,2,3,. . . 
The internal radiation is formulated using radiosity-irradiation 

equations for a diffuse enclosure with internally averaged total 
emissivity/absorptivity c;. The radiosity is 

</+((?) = t l (rT4 + ( l - £ ; ) g - ( 0 ) (7) 

The irradiation is the shape-factor-kernel-weighted average of the 
radiosity [1] as depicted in Fig. 1. 

r° l Id - d'\ 
q-(8)= j g+(0 ' ) -s in \dd' 

J—r 4 \ 2 / 

+ f % + ( 0 ' ) - s i n , 
Jo 

\d0' 
4 I 2 

Linearization is made by writing 

q+(6) = armi+ AaT* + (1 - €;)<?* 

<T(0) = ffTVHl + q*} 

where g* is the dimensionless irradiation 

(8) 

(9) 

(10) 

S X T E R N A L 

I R R A D I A T I O N 

S Y M M E T R Y FOR 

E X T E R N A L 

I R R A D I A T I O N 

Fig. 1 Externally-irradiated hollow cylinder 
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q*(8) = f '[4t,-T*(0') + ( l - f i ) 9 * ( f l ' ) ] - 8 i n ^ 
• / - * 4 2 

and 

T*(0,T;) = (T - T0)/T0 

ldd' (11) 

(12) 

The net internal heat flux, the right hand side of equation (3), be
comes 

<?; = daT0*[4T* - q*] (13) 

The quantity T*{8,ri) is defined in equation (12). In equations (9,11), 
and (13) the quantity T*(6) is understood to be evaluated at the inside 
wall, T*(8,r, = 0). 

Equation (1) is simplified for S/R « 1 as follows. Lety = r — (R — 
5/2) so that the derivatives with respect to r are in terms of y. Then 
assume that the remaining r terms may be approximated by the 
constant value of R. Let a dimensionless radial coordinate be 

r, = (ko/kr)^y/R (14) 
Consider the case of a long cylinder where dT/dz = 0. Then equation 
(1) becomes 

subject to 

and 

where 

d7)2 

dT* 
(k*/Ve) = G * 

d2T* d2T* 
0 = - + -

d82 

l - 4 T * , 7 j = r/e 

(k*he)~ 

k* = -

dr] 

Rhe<rT, 

[4T* - q*], r] = 0 

Ve = (k,/kr)^8/R 

(15) 

(16) 

(17) 

(lSa,b) 
o 

Equations (11) and (15) with equations (16, 17), and (4) and the 
symmetry conditions, dT*/Z)8 = 0 at 8 = 0,ir, formulate the 
problem. 

S e r i e s S o l u t i o n 
A series solution to equation (15) follows from separation of vari

ables 

T*(d,ri) = Y. [bn coshnrj + cn sinhra?j] cosnS (19) 

It clearly satisfies the circumferential symmetry conditions at d = 0 
and 7r, and it remains to satisfy the radial conditions. The linear 
combination of cos nd terms of T*(0,O) gives rise to a similar result 
for q* [7], 

<?*(#) = £ dn cosnB 

where from equation (11) 

dn "• 

where 

1 /.+--1 
Sn ~ A 7 £ 

cosrat/ J-* 4 

4e;S„ 

1 - (1 - <a)Sn 

-cosn6'd8' = -
- 1 

2 (4n2 - 1) 

Hence to satisfy equations (17) and (16) one writes 

and 

bn = -

Cn £n®n 
€ 0 « ™ 

a„ 

4 coshnrje -I e„ 

where 

1 + 4 sinhre?;,; 
nk* 

4(1 - Sn) 

1 - (1 - €i)Sn 

nk* 
H sinhntje 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

D i s c u s s i o n 
The problem is now completely solved, subject to the simplifications 

made: (1) symmetrical external irradiation, (2) small 8/R, but, due 
to anisotrophy, not necessarily small (ke/kr)

1/2S/R, (3) linearized 
radiation, and (4) diffuse gray interior wall. For a given external ir
radiation and surface finish, equation (6) is used to find To, and 
equation (5) fixes the set of an coefficients. Then equation (24) fixes 
bn; equations (22, 23), and (25) fix c„; and equation (19) gives T*. 
Dimensional values of T follow from equation (12). 

For external heating of the form asGs cos /? cos 6, on the half cyl
inder, where as and Gs are not functions of d, the maximum temper
ature occurs at 6 = 0, y = S, and the minimum occurs at 6 = TT, y = b. 
For such an external condition the difference between the tempera
tures at 6 = 0 and 8 = ir is 26iTo, on the inside of the cylinder. To 
minimize this temperature difference for a fixed value of To, one wants 
a large £,-, a small ee, a large ks and 5, and a small R. Equation (6a) 
shows that, to have a small ee for a fixed To, as needs to be small too; 
i.e., a fixed ots/ee must be maintained. Thus the designer may use 
aluminized tape to achieve a low ee and add white dots or stripes to 
adjust as/ee. 

The fin approximation T(d,y) = T{8) may be invoked when sinh 
rjt/rie and cosh r\e are very nearly unity. The first-order result for AT 
= Tm a x — Tm jn is that the result taking account of radial resistance 
equals the result obtained from neglecting it times a correction 
factor 

.Nomenclature. 
an = external flux coefficients, equation (5) 
bn = temperature distribution coefficients, 

equation (19) 
cn = temperature distribution coefficients, 

equation (19) 
dn — internal radiation coefficients, equa

tions (20, 21) 
en = internal net flux coefficients, equation 

(25) 
Gs = solar irradiation, W/m2 

k = thermal conductivity, W/m K 
n = integer 1,2,3,. . . 
q = heat flux, W/m2 

q+ = radiosity, equation (7), W/m2 

q~ = irradiation, equation (8), W/m2 

r = radial coordinate, m 

R = mean radius of cylinder, m 
Sn = radiation integral, equation (22) 
T = temperature, K 
y = distance from inner surface of wall, m 
2 = axial coordinate, m 
a = Absorptivity 
(3 = Angle from normal to z -axis 
5 = Wall thickness, m 
f = Emissivity 
r] = Dimensionless y -coordinate, equation 

(14) 
8 = Angle from line of symmetry for external 

radiation 
•K = 3.141592 . . . 
a = Stefan-Boltzmann constant, approxi

mately 5.67 X 10"8 W/m2 K4 

Subscripts 

e = external 
i = internal 
n — nth term 
0 = zeroth term 
r = radial 
r.r. = radial resistance 
s = solar 
8 = Circumferential 

Superscripts 

* = dimensionless quantity 
+ = away from wall 
— = toward wall 
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16 

4 - a) \ krT, 
(26) 

Figure 2 gives insight into why only two terms need be carried for 
most practical calculations. The two-term representation of an asGs 

cos /3 cos 0 external source is seen to be close to the exact curve. Figure 
3 shows T(B, 7] = 0) as indicated by just the first term and by the first 
two terms of equation (19) for a sample case: R = 40 mm, 5 = 0.50 mm, 
Gs = 1382 W/m2, /? = 0, as = 0.94, ee = n = 0.90, k» = 50 W/m K, and 
kr = 0.50 W/m K. The addition of the second term raises the predicted 
temperature of both the 0 = 0 and 6 = IT points and maintains the 
fixed temperature difference 2£>iTn. Addition of higher-than-sec-
ond-order terms gives a result which cannot be distinguished from 
the two-term approximation graphed in Fig. 3. 

It is clear that, since the radiation is linearized, an external con-
vective cooling in a terrestrial situation can be readily accommodated. 
If a convective cooling term h(T — Te) is added to the right hand side 
of equation (2), it can be incorporated into the present solution by the 
following changes: (1) Replace ee wherever it appeared by 

ee ' = ee + hTo/UTo* 

(2) Replace equation (5) with 

2 r*aeqe- + h(Te-T0) + hT0/4 
an = — I • ( 

•K Jo ee'<rT0
4 

2 /•* 
8 cosnddd 

•K Jo 

(3) Replace equation (6) with 

(27) 

(28) 

eoT0
i + h(T0-Te)=- Caeqe-dd 

•K JO 
(29) 

This transcendental equation requires numerical solution to find 
temperature To. 
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Visible Radiation Transfer in a Black 
Ink Suspension 
Measurements of the directional and spatial distribution of the radiation intensity have 
been made for an irradiated India ink suspension, and the results have been used to deter
mine radiation fluxes associated with the forward and backward directions. The inherent 
radiative properties of the ink have also been measured and used with appropriate theo
ries (the discrete ordinate and three-flux methods) to predict the radiation field within 
the suspension. For the prescribed laboratory conditions, the radiation is concentrated 
within a cone of half angle 8 ~ 0.85 rad throughout the suspension, and for this region 
good agreement is obtained between the intensity measurements and predictions based 
on the discrete ordinate method. Good agreement is also obtained between radiation flux
es measured for the forward direction and predictions based on both the discrete ordinate 
and three-flux methods. Agreement between the predicted and measured intensities for 
B S; 0.85 rad, as well as agreement between predicted and measured radiation fluxes for 
the backward direction, is less satisfactory. Differences are attributed to uncertainties 
in the radiation intensity and phase function measurements. 

Introduction 
The problem of visible radiation transfer in liquids is relevant to 

natural water bodies and to liquid layers used for the collection of solar 
energy. This transfer strongly influences thermal structure and 
photosynthetic activity in natural water impoundments [1], as well 
as the performance of solar ponds [2, 3] and absorbing liquid solar 
collectors [4-6], The problem typically involves one-dimensional 
transfer in a planar, scattering-absorbing suspension. The incident 
radiation, which may be composed of diffuse and collimated compo
nents, experiences Fresnel reflection and refraction at an air-liquid 
interface, absorption and anisotropic scattering within the liquid, and 
reflection at the bottom surface. 

Interest in the foregoing problem has stimulated efforts to develop 
detailed procedures for predicting the radiation field in aqueous 
suspensions [3, 7-10]. These procedures treat one-dimensional 
transfer in a plane-parallel system and, accounting for anisotropic 
scattering and surface reflection and refraction effects, may be used 
to predict radiation intensities and fluxes at any point within the 
suspension. In recent years, properties required for implementation 
of the solution methods (the extinction coefficient, the scattering 
albedo, and the scattering phase function) have been measured for 
a variety of aqueous suspensions [11-14]. 

To develop confidence in the use of available theories and radiation 
property data for predicting solar radiation transfer in liquid sus
pensions, it is necessary to compare predictions based on such results 
with radiation field measurements made under controlled laboratory 
conditions. The objective of this study has been to make such com
parisons for a representative aqueous suspension. Because it is pre
sumed to be spectrally nonselective and is receiving consideration as 
a working fluid for absorbing liquid solar collectors [4], an India ink 
suspension was chosen for consideration. Detailed measurements have 
been made of the radiation field in an irradiated suspension, and the 
results have been compared with predictions based on the use of es
tablished theories with radiative properties measured for the ink. 

Experimental Procedures 
A schematic of the system used for the radiation measurements is 

shown in Fig. 1. A 294 L plexiglass tank (0.61 m deep and 0.56 by 0.86 
m on the sides) was used as a container for the India ink suspension, 
which was prepared by mixing 10 mL of Higgins 813 Eternal Ink, a 
commercially available black drawing ink, with 290 L of tap water. 
The ink is a suspension of carbon black particles, having effective 
diameters from 0.02 to 0.06 fim, in an aqueous solution of shellac, gums 
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and preservatives. Monochromatic radiation measurements were 
made by submerging a fiber optic probe in the culture. The probe was 
constructed of stainless steel tubing (1.9 mm o.d., 1.1 mm i.d.) in which 
a 1 mm monofilament plastic fiber was inserted. The probe tip was 
capped with a brass barrel guide having a 0.33 mm aperture and a glass 
cover. The aperture was separated from the tip by a distance of 11 
mm, and the half angle of view of the probe was determined to be 0.058 
rad (3.3 deg). The probe was supported by a traversing mechanism 
which permitted travel in each of the three rectangular coordinates, 
as well as rotation about a horizontal axis. All probe and traverser 
components were painted with Nextel velvet black to minimize re
flections. 

The light source for the experiments consisted of an overhead bank 
of twelve 150 W flood lamps, arranged 4 by 3 on approximately 0.21 
m centers. A large, fused opal (diffusing) glass plate was suspended 
approximately 1.5 m below the lamps, and white paper sheets were 
used to form vertical side walls between the lamps and the tank. The 
sheets minimized light loss and promoted a more uniform distribution 
of radiation incident on the diffusing glass. A small rectangular section 
was cut from the glass to permit insertion of the probe traversing 
mechanism. 

The directional distribution of the radiation incident on the sus
pension was measured by using the fiber optic probe, and the results 
are shown in Fig. 2. The deviation from isotropic conditions is small 
(less than 10 percent) for 8* 5 0.7 rad (40 deg), but becomes significant 
for larger values of the incident angle, at which the intensity of the 
incident radiation decreases sharply to zero. The probe was also used 
to map the variation in the normal intensity (8* = 0) over a horizontal 
plane just above the air interface, and the standard deviation of the 
measurements was found to be less than 10 percent over a central 
region which occupied approximately 60 percent of the total surface 
area of the suspension. 

Three different boundaries are pertinent to radiation transfer in 
the suspension and include the air interface, the tank sides, and the 
tank bottom. The air interface and the bottom are natural boundaries 
which characterize many applications, while the tank sides represent 
an unnatural boundary which could affect the assumption of one-
dimensional radiation transfer in the suspension. With an index of 
refraction of 1.49 for the plexiglass, the water-plexiglass-air interface 
is completely reflectant to all radiation which is incident on the side 
walls at angles 0 < 42 deg. Accordingly, because it is refracted into a 
cone of half angle 8 < 48.6 deg, most of the irradiation which is 
transmitted by the air interface and reaches the sidewalls without 
having been scattered will be reflected back into the suspension. 
However, because optical depths associated with the suspension are 
large and all measurements are made along a vertical line at the center 
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Fig. 2 Actual and isotropic distributions of the radiation Incident at the air 
interface of the suspension 

of the tank, it is still reasonable to neglect two and three-dimensional 
effects resulting from this reflection. 

The bottom boundary was controlled through the use of two plex
iglass sheets, which were coated with Nextel velvet optical paints. One 
surface was coated with a diffusely reflecting white paint of reflectance 
Pd = 0.91, and the other surface was coated with a black paint of re
flectance pd « 0 [15]. The air interface is optically smooth and, in 
addition to providing for refraction of all incident radiation into a cone 
of half angle 6 = 48.6 deg (0.85 rad), it provides for the reflection of 
upwelling radiation incident from the suspension. 

Radiation measurements were made at 6 depths in the suspension, 
and for each depth a total of 51 measurements were made in an an
gular scan of the probe from 0 = 0 rad (probe tip facing upward) to 
8 = -w rad (probe tip facing downward) in increments of 0.0628 rad (3.6 
deg). The first depth, zo, corresponds to a location just below the 
air-water interface (zo = 6.4 mm), for which radiation intensities are 
large and are primarily associated with the forward direction (0 < 0 
< -ir/2 rad). The forward flux at this location, which may be expressed 

X 2ir p HII 
S h(z0, 0) cos 0 sin 6dBd<t> (1) 

has been used as a reference condition for normalization of all other 
fluxes. Accordingly, the normalized flux at any location corresponds 
to 

Fx(z) •• 
J* 2ir /»02 

I h(z, 8) cos 8 sin BdSddj 
o JBI 

J> 2x /•» 7r/2 
1 I\ (zo, 8) cos 8 sin 

o J o 

(2) 

where the values of 8\ and 82 depend upon whether one is interested 
in the forward flux (0i = 0, 82 = TT/2), the backward flux (61 = ir/2, 02 

= 7r), or the net flux (81 = 0,82 = ir). Equation (2) is evaluated from 
the measurements of this study by assuming the azimuthal depen
dence of the radiation field to be negligible and by assuming the 
measured intensity I\ (z, 8) to be constant over the angle between 

measurements (0.0628 rad). The normalized flux may then be ex
pressed as 

£ [h (z, Oi-i) + h (z, 0,)][sin2 (8i) - sin2 (8^)] 

Fx(z)=- (3) 

£ [h (zo, 0,--i) + h (20, 0;)][sin2 (0;) - sin2 (8^)] 
1=1 

where summing from n\ = 1 to n 2 = 25 would give the forward flux, 
from ni = 2 6 t o n 2 = 51 would give the backward flux, and from ni = 
1 to n% = 51 would give the net flux. 

A measure of the spectral intensity of the radiation was obtained 
from the output of the fiber optic probe, which was rendered mono
chromatic by passing it through a 513 nm interference filter (Special 
Optics 9-2103-5145) having an 8 nm bandwidth. The monochromatic 
radiation was transmitted to a photomultiplier tube (EMI 9558Q), 
and the resulting signal was transferred to a variable gain current-
to-voltage amplifier (Keithley, Model 18000). The output was then 
averaged over a 10 s interval by using a Matrix (Model 1605) volt
age-to-frequency converter with a Data Precision (Model S740) fre
quency counter. The averaged signal, P, which was recorded using a 
line printer, is related to the intensity of the radiation intercepted by 
the probe by an expression of the form 

S f 
•J ApJnp 

Ixg(Q)lj,dQdA (4) 

where a is a proportionality constant determined by the sensitivity 
of the photomultiplier tube and the characteristics of the signal 
processing system, Ap is the exposed area of the probe, Qp is the probe 
solid angle of view andg(A) is a function accounting for the angular 
sensitivity of the probe. Neglecting the variation of I\ over the probe 
field of view, it follows that, to a good approximation, 

f f g(Q)p.dQdA h (5) 

where the term in brackets depends on the characteristics of the probe 
tip design, the photomultiplier tube and the signal processing system. 

•Nomenclature. 

d = depth of the suspension, m 
F = radiative flux, W/m2 

F = normalized flux 
F\, Fi, F3 = fluxes associated with regions 1 

(0 < 8< 8crit), 2((?crit < 8 < TT/2) and 3(TT/2 
< 8 < 7r) of the three-flux method, W/m2 

F(, = backward or upwelling (TT/2 < 8 < IT) 
flux, W/m2 

Ff = forward or downwelling (0 < 8 < TT/2) 
flux, W/m2 

F„ = net (0 < 8 < w) flux, W/m2 

I = intensity, W/m2-sr 
7 = normalized intensity 

p = phase function 
z = vertical coordinate (measured from the 

air-water interface), m 
zo = location of measurements closest to 

air-water interface, 6.4 mm 
/? = extinction coefficient, m _ 1 

8 = polar angle, rad 
9crit = critical angle for internal reflection, 

rad 
K = absorption coefficient, m _ 1 

;U = COS0 

a = scattering coefficient, m _ 1 

p = reflectance 
T = optical depth 

<f> = azimuthal angle 
u> = scattering albedo 

Subscripts 

6 = backward direction 
d = bottom condition 
/ = forward direction 
n = net 
X = spectral 
1,2,3 = regions of the three-flux method 

Superscr ip ts 

* = incident radiation at the air interface 

710 /. VOL. 102, NOVEMBER 1980 Transactions of the ASME 

Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Accordingly, since all radiation results of this study are normalized, 
the intensity may be equated to the recorded signal P. 

Experimental errors associated with the radiation measurements 
may be attributed to long term drift in the light source and the pho-
tomultiplier tube, as well as suspension settling and sidewall reflection 
effects. The cumulative error resulting from these effects is small for 
measurements made in the central portion of the forward direction, 
where signals are large, but is likely to be significant for measurements 
associated with the sideward and backward directions, where signals 
are considerably weaker. 

Theoretical Methods 
The radiation field within a planar, scattering-absorbing medium 

is determined by the equation of transfer, which may be expressed 

fi-—= -h(r\, n, 0) 

cox riw r+l ^ 
+ — J Px(ix',^'-^ix,4>)I\(T\,n'U')dii'd<j,' (6) 

4-7T JO J - l 

The dependent variable is the spectral intensity, I\(T\, H, </>), of the 
radiation at the optical depth T\ = p\z and in the direction of JX and 
if>. The radiative properties of the medium required to solve equation 
(6) include the extinction coefficient, fl\, the scattering albedo, co x, 
and the scattering phase function, p\. 

Two methods have been used to solve equation (6),.and in both 
cases the incident radiation was assumed to be uniform and to expe
rience Presnel reflection and refraction at the air interface, as well as 
diffuse reflection at the bottom. In the three-flux method of solution 
[10], the radiation field is separated into three isotropic components 
associated with the following regions: Region 1 (0 < 6 < Serit), Region 

2 ( 0 a l < 7r/2), and Region 3 (TT/2 : 17r). The critical angle, 6C1 

is the angle of total internal reflection at the air interface and may be 
computed from knowledge of the change in the index of refraction 
associated with the interface. For an air-water interface, 6CTit = 48.6 
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CL 
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Fig. 4 Directional distribution of the normalized radiation intensity for the 
India ink suspension with a black bottom 

deg (0.85 rad). Previous measurements [18] have indicated that a large 
fraction of the downward propagating radiation in a diffusely irra
diated aqueous suspension is concentrated in Region 1. The three-flux 
method may be used to determine the variation with optical depth 
of the radiation fluxes associated with the three regions (Ft, F2, F3), 
from which the forward flux (Ff = Ft + F2), the backward flux (Ft, = 
Fs), and the net flux (Fn = F\ + F2 - F3) may be determined. 

In the more detailed method of discrete ordinates [9, 10], the ra
diation field is divided into a finite number of directions (ordinates), 
and a discrete intensity is assigned to each direction. Twenty-four 
ordinates were used in this study, and the method allowed for deter
mining the directional distribution of the radiation, as well as the 
forward, backward and net radiation fluxes, as a function of optical 
depth. Two solutions were obtained using this method. In one case 
the directional distribution of the incident radiation was assumed to 
be isotropic, while in the other case the actual (measured) distribution 
was used (Fig. 2). 

The radiative properties required for implementation of the the
oretical methods were obtained from measurements performed on 
a small sample extracted from the India ink suspension. Procedures 
previously applied to other suspensions [14] were used to measure the 
extinction coefficient, /3A, the absorption coefficient, K\, and the phase 
function, px, at X = 513 nm. The scattering albedo, cox = ffx//3x, was 
then inferred from knowledge of the scattering coefficient, a\ = /3A 
- KA. 

Values of p \ = 6.78 m _ 1 and cox = 0.15 were obtained for the sample 
ol this study (a 0.00345 percent aqueous suspension of India ink), with 
the value of /3x providing an overall optical depth of Tx,d = fi\d = 4.0 
for the suspension. By comparison, the extinction coefficient and 
albedo associated with clear, natural waters at the same wavelength 
are /3A ~ 0.4 m _ 1 and cox ^ 0.5 [11]. The comparatively low value of the 
albedo for the ink suspension may be attributed to the strong effect 
which the carbon black particles have on radiation absorption. It has 
been found that, for ink concentrations in the range from approxi
mately 0.0025 to 0.0125 percent, the albedo of the suspension is con
sistently low and decreases with increasing concentration [16]. This 
result suggests that the contribution of absorption to extinction be
comes more important with increasing concentration. 

The phase function distribution obtained for the sample of this 
study is shown in Fig. 3. The data were fit with a cubic spline ap
proximation and were then shifted upward to satisfy the phase 
function normalization requirement. The directional distribution of 
Px implies that scattering is primarily in the forward direction, al
though the distribution is less sharply forward peaked than results 
obtained for other aqueous suspensions [14]. 

The accuracy of the extinction coefficient and phase function 
measurement procedures has been tested by comparing measure
ments obtained for 2 firn diameter latex spheres with predictions 
based on the Mie theory [17]. The agreement between results was 
within approximately ±10 percent for the extinction coefficient and 
±25 percent for the phase function, and the discrepancies were at
tributed to the effects of multiple scattering on the measurements. 
Due to the low signals associated with phase function measurements 
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Fig. 5 Directional distribution of the normalized radiation intensity for the 

India ink suspension with a white bottom 
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in the backward direction, however, the existence of uncertainties 
exceeding ±25 percent would not be unreasonable. 

R e s u l t s 

Radiation intensity measurements made for the India ink sus
pension are plotted in Figs. 4 and 5 for the black and white bottom 
conditions, respectively. The data have been normalized with respect 
to the maximum intensity at z0, and a ten-fold scale expansion has 
been used for the upwelling (8 > TT/2) intensities. For both bottom 
conditions the directional distribution of the radiation within the 
suspension is concentrated within a cone of half angle 8 » 0.27 IT rad, 
which corresponds to the critical angle into which all incident radia
tion is refracted at the air interface. A small amount of radiation ap
pears in the region 0.27 TT rad < 8 < 0.5 -w rad and is due primarily to 
the scattering of radiation from within the cone. For all values of the 
angle 8 associated with the forward direction, absorption acts to di
minish the radiation intensity with increasing optical depth, while 
scattering acts to redistribute the radiation from smaller to larger 
values of 8. The net effect is one of promoting a more uniform (iso
tropic) directional distribution of the downwelling radiation with 
increasing TX. However, the existence of a phase function which is 
highly forward peaked precludes the effect from becoming significant 
until large values of T\ are reached. 

The results of Figs. 4 and 5 also indicate that, for both bottom 
conditions, the intensity of the downwelling (8 < TT/2) radiation decays 
rapidly, and in virtually the same manner, with increasing T. However, 
a small amount of radiation does reach the bottom, creating slightly 
different conditions for the upwelling radiation. For the white bottom, 
reflection contributes to upwelling intensities which exceed those 
associated with the black bottom for the lower half (T\ i, 2) of the 
suspension and which do not decrease monotonically with increasing 
T\. For the black bottom, the only contribution to the upwelling ra
diation is made by the scattering of downwelling radiation, and the 
intensity of the upwelling radiation decays monotonically to zero with 
increasing T\. These effects are revealed more clearly in Fig. 6, where 
intensity is plotted as a function of optical depth for 11 different an
gles ranging from 0 to ir rad in increments of TT/10 rad. For each angle 
the intensity is normalized with respect to the value at zo for that 
angle. For the black bottom, the intensity is strongly attenuated, ir
respective of angle, while for the white bottom, the intensity of the 
upwelling radiation in the lower half of the suspension is affected by 
the bottom reflection process. The effect would become more pro
nounced with decreasing T\:d. 

Comparisons may be made between the radiation measurements 
and predictions based upon the discrete ordinate and three-flux 
methods. Factors which may contribute to discrepancies between the 
experimental and theoretical results include: (1) departure of the 
directional distribution of the laboratory irradiation from the dis
tribution used in the analysis, (2) experimental errors associated with 
the radiation intensity measurements, and (3) experimental uncer
tainties associated with the radiative property measurements. 

Comparisons of the radiation intensity measurements with pre
dictions based on the discrete ordinate method are made in Fig. 7 for 
the black bottom condition. To standardize the comparisons and to 
consider the effects of both attenuation and redistribution of the ra
diation, the experimental and theoretical results are normalized with 
respect to the intensity corresponding to z = zo and 8 = 0 rad. Pre
dictions have been made for the actual directional distribution of the 
incident radiation, as well as for an isotropic distribution, which is 
often assumed in theoretical treatments of the problem (Fig. 2). 

Over the entire range of optical depths, the agreement between the 
data and predictions based on the isotropic distribution (solid curves) 
is good for the central portion of the forward hemisphere. The data 
are, however, consistently overpredicted for that portion of the for
ward direction ranging from 6 « 0.15 7r rad to 8 » 0.3 7r rad. This dis
crepancy may be attributed to the fact that the measured directional 
distribution of the irradiation (Fig. 2) is characterized by a significant 
departure from isotropy at an incident angle of 8* » 40 deg (0.22 ir 
rad). Assuming an index of refraction of 1.333 for the aqueous sus
pension, this angle corresponds to a refracted angle of 8 ~ 29 deg (0.16 
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•K rad) in the suspension. Hence, for the assumed isotropic distribu
tion, the angle at which the discrete ordinate method begins to over-
predict the measured intensities corresponds to the angle at which 
the directional distribution of the incident radiation experiences a 
significant departure from isotropy. This interpretation is supported 
by comparing the data with predictions based on the measured di
rectional distribution of the incident radiation (dashed curves). In 
this case there is far better agreement between the results for that 
portion of the forward hemisphere corresponding to 8 % 0.3 7r rad. 

For portions of the forward direction corresponding to 0.3 7r rad •& 
6 < 0.5 7r rad and for the entire backward direction (6 > 0.5 IT rad), the 
data are underpredicted by the discrete ordinate method for both 
directional distributions of the irradiation. In this case differences 
are likely due to uncertainties associated with the radiation intensity 
and phase function measurements, both of which become large with 
increasing values of 8. Since the suspension opacity is large and since 
the trends also characterize the white bottom condition, it is unlikely 
that the discrepancies can be attributed to uncertainties in predicting 
bottom reflection effects. Note that, for the backward direction, there 
is negligible difference between the predictions based on the two di
rectional distributions. 
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Fig. 8 Comparison of measured forward, backward and net fluxes with 
predictions based on the discrete ordinate method (black bottom) 

Comparisons between predictions and measurements may also be 
made in terms of radiation fluxes computed from equations (2) and 
(3). Such a comparison is made in Fig. 8, where all fluxes are nor
malized with respect to the forward flux at zrj. Note that, once nor
malized, there is negligible difference between predictions based on 
the actual directional distribution of the irradiation and the assumed 
isotropic distribution. The agreement between the theoretical and 
experimental results is excellent throughout the suspension, and it 
is evident that the inability to accurately predict intensities associated 
with the backward direction (Fig. 7) has little effect on the accuracy 
of the predicted forward and net fluxes. 

A comparison of the experimental results with predictions based 
on the three-flux method is made in Fig. 9. Five fluxes are considered 
and include the combined forward flux, the Region 1 and Region 2 
components of the forward flux, the backward flux and the net flux. 
Although the theoretical method underpredicts the Region 2 forward 
flux and the backward flux, there is good agreement between results 
for the complete forward flux, Ff, and the net flux, Fn, throughout 
the suspension. 

S u m m a r y 
Radiation field measurements have been made in a suspension of 

India ink which is characterized by a large extinction coefficient, f3\ 
= 6.78 m_ 1 , a scattering albedo of io\ = 0.15 and a scattering phase 
function which is strongly peaked in the forward direction. The overall 
optical depth of the suspension is r\:d = 4, and the suspension has 
been irradiated across an air interface. The directional distribution 
of the incident radiation was nearly isotropic up to an angle of 6* ~ 
40 deg (0.70 rad), but was characterized by a significant-reduction of 
the intensity with increasing angle beyond 40 deg. The radiation 
measurements have been compared with predictions based on the 
discrete ordinate and three-flux methods, and the key conclusions 
of the study are as follows. 

1 The directional distribution of the measured radiation just 
below the interface is concentrated within a cone of half angle 0 « 48.6 
deg (0.85 rad) about the nadir, and most of the radiation which is not 
absorbed remains within this cone throughout the suspension. Some 
of the radiation is scattered from the cone into the backward direction, 
but due to the existence of a highly forward peaked phase function, 
all radiation intensities associated with this direction are less than 
3 percent of the maximum intensity associated with the forward di
rection. 

2 The effects of bottom reflection are small, but discernable, for 
the conditions of this study. In the lower half of the suspension, in
tensities associated with the backward direction are larger for a white 
(highly reflecting) bottom than for a black bottom. Differences would 
become more pronounced with decreasing optical depth, r\td-

3 The directional distribution of the radiation intensity within 
the suspension is well predicted by the discrete ordinate method for 

OPTICAL DEPTH,Tx 

Fig. 9 Comparison of measured fluxes with predictions based on the 
three-flux method (black bottom) 

d ;S 48.6 deg (0.85 rad), when the measured directional distribution 
of the irradiation is used for the predictions. If the irradiation is as
sumed to be isotropic, however, the data are significantly overpred-
icted for the region 29 deg (0.50 rad) < 0 < 48.6 deg (0.85 rad). Irre
spective of the directional distribution of the irradiation used for the 
discrete ordinate calculations, the data are underpredicted for 0 £ 
48.6 deg. The discrepancy is attributed to uncertainties in the ra
diation intensity and phase function measurements associated with 
this region. 

4 Good agreement is obtained between the data and predictions 
of the forward and net radiation fluxes for both the discrete ordinate 
and three-flux methods. 
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A Source Function Expansion in 
Radiatiwe Transfer 
The radiative heat transfer problem for an isotropically scattering slab with specularly 
reflecting boundaries is reduced to the solution of a set of algebraic equations by expand
ing the source function in Legendre polynomials in the space variable in the integral form 
of the equation of radiative transfer. The lowest order S-l analysis requires very little 
computer time for calculations, is easy to apply and yields results which are sufficiently 
accurate. For an absorbing, emitting, isotropically scattering medium with small and in
termediate optical thickness (i.e., T = 2), which is of great interest in engineering applica
tions, and for which the P-l and P-3 solutions of the P-N method are not sufficiently accu
rate, the S-l solution yields highly accurate results. In the case of a slab with diffusely re
flecting boundaries, the problem is split up into a set of simpler problems each of which 
is solved with the source function expansion technique as a special case of the general 
problem considered. 

I n t r o d u c t i o n 
The solutions of one-dimensional, linear transport equation in 

neutron transport theory have been reported in the literature by 
various highly interrelated methods utilizing a suitable expansion in 
the space variable [1-6] or by the application of the integral transform 
technique [7-9]. Recently, some radiative heat transfer problems have 
been solved by the application of Fourier transform technique [10-12]. 
In all of these methods of analysis, the integral form of the transport 
equation is reduced to the solution of a set of algebraic equations. The 
advantage of expansion in the space variable lies in the fact that the 
convergence of the solution is fast, thus, even the lower order solutions 
yield results which are sufficiently accurate for most applications. 

In the present investigation, a Legendre polynomial expansion in 
the space variable is applied to the source function and the integral 
form of the equation of radiative transfer is transformed into a set of 
algebraic equations. The resulting system of equations for this case 
is identical to those obtainable by the Fourier transform technique; 
but, the Legendre polynominal expansion is a more general approach 
for the solution of such problems. The reason for this is that the Le
gendre polynomial expansion is a simple, straightforward method, 
involves none of the very complicated and lengthy analysis that is 
needed in the Fourier transform technique and can be applied for 
more general situations. 

A n a l y s i s 
Consideration is given to radiative heat transfer in an absorbing, 

emitting, isotropically scattering slab of optical thickness la, and 
bounded by specularly reflecting surfaces. The mathematical for
mulation of the problem is given by 

H d J ( * ' M ) + / ( x , /t) = S(s), in |* | <a,\n\ < 1 (la) 
dx 
I(-a, n)=ci + bil(-a, -fi), n>0 (lb) 

I(a, -fi) = c2 + 62/(1, M). M > 0 (1c) 

where the source function, S(x), is defined as 

S(x) = (1 - w)H(x) + - f I(x, AI W (Id) 
2 J-i 

Here x is the optical variable, fi is the cosine of the angle between the 
positive x direction and the direction of the beam, I(x, u) is the ra
diation intensity, 61 and b2 are the specular reflectives of the 
boundaries, ci and c2 represent the emission of radiation from the 
boundaries, H(x) is the emission of radiation from the medium, and 
co is the single scattering albedo. 

1 Permanent Address: Department of Mechanical and Aerospace Engi
neering, North Carolina State University, Raleigh, N.C, 276S0. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
February 4, 1980. 

The radiative transfer problem defined by equations (1) can be 
transformed into an integral equation for the source function, S(x), 
by the procedure described in reference [13]. We find 

S(x) = (l-w)H(x)+-[c1E2,b(a + x) 

+ c2biE2,b(3a + x) + c2E2,b(a - x) + c1b2E%b(3a - x)\ 

+ 7 bxb2 C | B u [ 4 a + (x- y)] + Elib[4a - (x - y)]}S(y)dy 

2 <J —a 

+ ; f \bxEx,b\1a +(x- y)] + b2Elib[2a - (x - y)]\S(-y)dy 
2 *J — a 

+ 7 C Ex(\x - y\)S(y)dy (2a) 
2 */ —a 

where we defined the following modified exponential integral func
tions, Ek,b(x), 

Ek 
0 1 - 6i62e~4a/" 

(2b) 

for k = 1 or 2, x > 0. We note that for 61 or b2 equal to zero, the Ei}b(x) 
and E2tb(x) functions reduce to the usual exponential integral func
tions J E I U ) and E2(x), respectively. 

The source function S(x) is expanded in terms of the Legendre 
polynomials Pn(x/a) as 

Six) = E j ̂ 2 I M„P„ £) in |*| < a (3) 

The expansion coefficients Mn are determined by utilizing the or
thogonality property of the Legendre polynomials. We find 

M„ = ( l -&>) C" Pnl-\H(x)dx + - C" P„H [ciE2ibia + x) 
<J-a \a] 2 J-a \a) 

+ c2biE2tbi3a + x) + c2E2ibia - x) + cib2E2/bi3a - x)]dx 

• |6i62[£i,6(4o -x+y) + Elib(4,a -y + x)] + EiQx -y\)]dxdy 

^<-»-ii^)*-f.I>(;W) 
• [biEiibi2a + y - x) + b2Elib(2a - y + x)\dxdy, (A) 

where n = 0, 1, 2, 3 , . . . . 
Here we note that equations (4) obtainable by the Fourier transform 
technique after an elaborate and lengthy manipulation as described 
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in the reference [12], are derived here with a simple and straightfor
ward Legendre polynomial expansion. 

Equations (3) and (4) form the complete solution of the problem 
for the determination of the source function. That is, the system (4) 
provides an infinite set of algebraic equations for the determination 
of the expansion coefficients, M„. In practice, the system is terminated 
after a finite number of terms, N. Once the expansion coefficients, 
M„, are known from the solution of the system (4), the source func
tion, S{x), is determined according to equation (3). Knowing the 
source function, various physical quantities of interest, such as the 
radiation intensity, the radiative heat flux, the reflectivity or the 
transmissivity of the slab are readily determined from their defini
tions. 

The coefficients in the system of equations (4) involve single and 
double integrals containing a product of Pn (x/a) and Ek,b (x) functions 
as the integrand. For the cases of b\ or 62 equal to zero, these integrals 
are evaluated analytically for low orders of N and listed in the Ap
pendix. For the general case and higher values of N, the integrals are 
evaluated here numerically using a 20 point gaussian quadrature. 

The principal advantage of the method in reducing the radiation 
problem to the solution of a set of algebraic equations given by the 
system (4) is that even for the very low order solutions (i.e., low values 
of N), very accurate results are obtainable for the radiative heat 
flux. 

Consider, for example, the radiation problem (1) for c\ = 1, b\ = 
c2 = H(x) = 0. Clearly, this particular case corresponds to a physical 
situation in which the boundary at x = a of the slab is transparent and 
irradiated by an isotropic radiation of unit intensity, the boundary 
at x = a has a specular reflectivity b2, while contribution of the 
emission terms H(x) and C2 from the medium and the wall at x — a 
are considered negligible. 

For the case of N = 1, for example, equation (3) for the source 
function reduces to 

S(x)= — (M0+WIX 

2a \ a, 
(5) 

where the equations for the determination of the coefficients Mo and 
Mi are obtained from equations (4) as 

M 0 = - f ° [E2(a + x) + b2E2(3a - x)]dx 
<J—a 

+ — {MO f" f " EiQx -y\)dxdy + 3Mt 

4o I J-a J-a 

^•Ei(\x-y\)dxdy 
-a *J — a o, 

f } £i(2a -y + x)dxdy 
*J —a «J —a 

+ 62 Mo 

+ 3Mi C" C"-E1(2a-y + x)dx 
<J —a *J — a a 

dy (6) 

and 

Mi = - f ° - [E2(a + x) + b2E2(3a - x)]dx 
2 •J -a a 

LO [ (°a C*a x 
+ — Mo 1 1 -Ei(\x-y\)dxdy 

4a [, <J -a u -a a 

X a s* a Y V 
-y-Ex(\x-y\)dxdy 

-a J —a a d 

CO 
• b2— M o 

4a I 

+ 3Mi 

r rx-E: 
»J —a *J —a Q, 

Xa r"xy 

-a <J -a a a 

(2a — y + x)dxdy 

Ei(2a -y + x)dxdy (7) 

The analytic expressions for various integrals appearing in equations 
(6) and (7), derived from references [14-16] are listed in the Ap
pendix. 

The equations for higher order solutions can be obtained from 
equations (3) and (4) in a similar manner. 

The net radiative heat flux qr(x) anywhere in the medium is de
termined from 

where 
qr(x) = \q + (x) - q (x)] 

q+(x) = 2ir S I(x, n')ii'dfi' 

q~(x) = 2ir I I(x, -fi')ix'dfi' 

(8a) 

(86) 

(8c) 

and the forward and backward radiation intensities I(x, jt) and I(x, 
—fi), respectively, are related to the source function in accordance 
with the expressions given in reference [13]; hence, they are known 
when the source function is known. 

The hemispherical reflectivity, R, and the transmissivity, F, of the 
slab for bi = 0 are determined from 

fl = ^ = ^ a n d r = ^ : (1 - 62) 
7TCl TTCl 

q+(a) 

TTCl 
(9) 

Simpl i f i ca t ion for D i f fus e R e f l e c t i o n 
When the boundaries of the slab are diffusely emitting and diffusely 

reflecting surfaces, the problem (1) takes the form 

dl(x, n) 

dx 

where 

• + I(x,n) = S{x), in | z | <a, \n\ < 1 

I(-a, /x) = c'i + 2dlK1, n > 0 
I(a,-ii) = c2 + 2d2K% ix > 0 

^ 1 = 1 I(—a, -ix')ix'dn' 

K2= J* 1 / (a ,M'V ,dM' 

S(x) = (l~u)H(x)+- C I(x,n')dn' 
2 J-i 

(10a) 

(106) 
(10c) 

(Ha) 

(116) 

( l ie) 

and d\ and d2 are the diffuse reflectivities of the boundary surfaces 
at x = — a and x = a, respectively. The problem (10) can be split up 
into simpler problems such that each of the simpler problems become 
a special case of the problem (1); hence, the solution of the problem 
(10) can be obtained by the method described previously. 

The radiation intensity I(x, fi) of the problem (10) is taken as, 

I(x, n) = I0(x, n) + (ci + 2d1Ki)h(x, n) 

+ (c22diK2)/2(x, /t) (12) 

where Io(x, fi), h{x, 11) and I2(x, /x) are the solutions of the following 
three simpler problems 

. N o m e n c l a t u r e . 
a = one-half of the optical thickness of the 

slab 
b\, b2 = specular reflectivity of the front and 

back boundaries, respectively 
ci, c2 = radiation emitted at the bounda

ries 
di, d2 = twice the value of diffuse reflectivity 

of the front and back boundaries, respec
tively 

En(x) = exponential integral function of 
order n 

H(x) = intensity of radiation emitted by the 
medium 

I(X,IJ.) = radiation intensity 
Pn(x) = the Legendre polynomial of order 

n 
qr(x) = net radiative heat flux 

q + (x), q~(x) = forward and backward half-
range fluxes respectively 

R = hemispherical reflectivity of the slab 
S(x) = the source function 
x = the optical variable 
r = transmissivity of the slab 
fi = direction cosine 
a) = single scattering albedo 

716 / VOL. 102, NOVEMBER 1980 Transactions of the ASME 

Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 The accuracy of the S-1 analysis in determining the hemispherical reflectivity and transmissivity of 
a slab from the solution of problem 1 for c\ = 1, b\ = cz = jff(x) = 0, b-i - 0.5. 

CO 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Method 

S-1 
Exact 
S-1 
Exact 
S-1 
Exact 
S-1 
Exact 
S-1 
Exact 
S-1. 
Exact 
S-1 
Exact 
S-1 
Exact 
S-1 
Exact 

2a = 0.5 

0.1344 
0.1344 
0.1619 
0.1619 
0.1925 
0.1926 
0.2270 
0.2271 
0.2661 
0.2664 
0.3110 
0.3115 
0.3630 
0.3638 
0.4240 
0.4253 
0.4968 
0.4988 

Hemispherical Reflectivity* 
2a = 1 

0.0539 
0.0539 
0.0808 
0.0808 
0.1116 
0.1117 
0.1474 
0.1475 
0.1897 
0.1898 
0.2407 
0.2408 
0.3036 
0.3039 
0.3837 
0.3846 
0.4899 
0.4929 

2a = 2 

0.0248 
0.0248 
0.0497 
0.0498 
0.0784 
0.0786 
0.1120 
0.1122 
0.1524 
0.1526 
0.2023 
0.2021 
0.2666 
0.2657 
0.3541 
0.3527 
0.4837 
0.4838 

Hemispherical Transmissivity 
2a = 0.5 

0.2308 
0.2307 
0.2412 
0.2412 
0.2529 
0.2529 
0.2662 
0.2663 
0.2814 
0.2816 
0.2991 
0.2993 
0.3197 
0.3202 
0.3442 
0.3450 
0.3736 
0.3748 

2a = 1 

0.1170 
0.1169 
0.1256 
0.1256 
0.1358 
0.1359 
0.1481 
0.1483 
0.1632 
0.1635 
0.1822 
0.1827 
0.2065 
0.2075 
0.2386 
0.2405 
0.2828 
0.2868 

* 
2a = 2 

0.0332 
0.0332 
0.0370 
0.0372 
0.0419 
0.0420 
0.0482 
0.0486 
0.0566 
0.0573 
0.0687 
0.0697 
0.0862 
0.0880 
0.1136 
0.1172 
0.1601 
0.1689 

; Exact results from reference [13] 

V a / ° ^ ' M ) + /„(*, n) = So(x), in |* | £ a, H <1 (13a) 
dx 

7o(-a ; M ) = 0 , M > 0 

I0(a,-n) = 0,n>0 

where 

and 

dx 

where 

and 

h(-a,n) - l , / t > 0 

J i ( a , - / t ) = 0 ,M>0 

S i ( * ) = - C h(x, tx'Wfi' 
2 J-i 

<>x 

where 

h(-a, n) = Q,n>0 

h(a, n) = l,fi>0 

co r l 

S2(x) = - I h(x, n')dfi' 
2 J-i 

(13b) 

(13c) 

S0(x) = (1 - w)H(x) + - f h(x, n')dn' (13d) 
2 J-1 

M d / l ( * ' M ) + h(x, /t) = SiM, in \x I < a, \n\ < 1 (14a) 

(146) 

(14c) 

(14d) 

fi dh{X' ^ + h(x, ii) = S2(x), in \x J < a , | / i | < 1 (15a) 

(156) 

(15c) 

(15d) 

Clearly, equations (13-15) are special cases of problem (1); hence, they 
can readily be solved with the approach described previously. How
ever, to determine I(x, /x) from relation (12), we need to know the 
coefficients K\ and K2, These coefficients are readily determined by 
utilizing the solutions I{(x, n), (i = 0, 1, 2) of the above simpler 
problems as now described. From equation (12) we write 

I(-a, -n) = I0(-a, -n) + (ci + 2diKi)h(-a, -/x) 

+ (c2 + 2d2K2)I2(-a, -fi) (16a) 

I(a, fi) = Io(a, [i) + ci2diKiIi(a, /i) 

+ (c2 + 2d2K2)h(a, M) (166) 

Equations (16) are operated on by the operator Jo ^dl* and the defi
nitions of K\ and K2 are utilized. We respectively obtain 

Ki = Qo(-a) + (ci + 2d1K1)Qi(-a) + (c2 + 2d2K2)Q2(-a) 

(17a) 

K2 = Q0(a) + (ci + 2d1K1)Qi(a) + (c22d2K2)Q2(a) (176) 

where we defined 

Ji(=Fa) • x1^ =Fa, =F/n)d^, i = 0,1 or 2 (17c) 

Here, Q;(=Fa)'s are known quantities since /;(=Fa, =F/i) are available 
from the solutions of the simpler problems (13-15). Then, equations 
(17a) and (176) provide two independent relations for the determi
nation of the coefficients Ki and K2 which completes the analysis of 
the diffuse problem (10). 

Results and Discussion 
To illustrate the accuracy of the lowest order S-1 solution, we 

consider the problem of specularly reflecting boundaries defined by 
equation (1) for the following special case. 

ci = 1, 6i = c2 = # ( * ) =0. 

The physical significance of this particular situation was discussed 
previously. For this particular case, we list in Table 1 the hemi
spherical reflectivity and transmissivity of the slab determined with 
the S-1 solution together with the exact results for the optical thick
nesses 2a = 0.5, 1, 2, when the specular reflectivity of the boundary 
at x = a is 62 = 0.5. 

As further illustration of the accuracy of the S-1 analysis, we con
sider the auxiliary problem given by equation (13) for an internal 
energy source of strength H{x) = 1. We choose this particular case 
because the exact solution is available for certain cases. We list in 
Table 2 the results obtained with the S-1 solution for the half-range 
flux, g0

+(a), 

Qo*(a) : 27T S Io(a,lx)ixd^i 
Jo 

and because of symmetry we have | g0
+(a) | = |go~(~a)|-

Over the range of parameters considered in this paper, the lowest 
order S-1 solution yields results which are sufficiently close to the 
exact solutions. In order to provide a numerical comparison between 
the S-1 solution and the P-1 and P- 3 results, we consider the hemi
spherical reflectivity given in Table 1 for the case of optical thickness 
2a = 2. For low values of co, say to = 0.1, the hemispherical reflectivity 
is 0.0248 with S-1; negative, hence meaningless, with P-1; 0.0073 with 
P-3; and 0.0248 with the exact analysis. For high values of co, say co = 
0.9, the hemispherical reflectivity is 0.4837 with S-1; 0.4690 withP-1; 
0.4821 with P-3; and 0.4838 with the exact analysis. 

The usefulness of the present S-1 solution lies in the range of small 
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T a b l e 2 T h e S-l a n a l y s i s i n t h e d e t e r m i n a t i o n of e x i t 
f l u x qfo+(a) f r o m t h e so lu t ion of equat ions (13) for 

-ET(x) = 1 and opt ica l t h i c k n e s s 2a = 1 

<?o+(a) = 2-r { I0(a,n)iidii 

Jo 
S-l Exact* 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.4524 
2.3504 
2.2344 
2.1009 
1.9460 
1.7639 
1.5468 
1.2835 
0.9575 
0.5434 

2.4523 
2.3472 
2.2290 
2.0955 
1.9391 
1.7565 
1.5399 
1.2778 
0.9538 
0.5421 

Calculated using the singular eigenfunction expansion technique from the 
analysis given in reference [13], pp. 421-428. 

and intermediate optical thicknesses, which is of great interest in 
engineering applications and for which P-1 and P- 3 solutions are not 
sufficiently accurate. Only for large optical thicknesses and O) -» 1, 
the P-1 and P- 3 approximations yield sufficiently accurate results. 

For a scattering medium, the advantage of the present method over 
the P-N method is in the treatment of the boundary conditions. In 
the P-N method, the boundary conditions are approximated by using 
the so-called Marshak's or Mark's boundary conditions. In the present 
method they are represented exactly, except for the approximation 
associated with the expansion of the source function. 

The present method can be extended to composite media consisting 
of parallel layers of slabs, anisotropic scattering and to other geome
tries such as the spherical symmetry. The extension to more than one 
dimensional problems is also possible. 

Furthermore, the S-l analysis is very simple and requires very little 
computer time for the calculation (i.e., the entire results for Table 1 
were run in three jobs for a total of 7.8 run time including CPU and 
I/O on the IBM 370/165). There appeared to be no significant increase 
in computer time for computation for larger optical thicknesses. 
However, the S- 3 solution requires slightly more computing time since 
the number of terms to be evaluated is increased. 
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APPENDIX 
A n a l y t i c E x p r e s s i o n s for the I n t e g r a l s in E q u a t i o n s (6) 

and (7) 

f E2(a + y)dy = C" E2(a -y)dy =--E3(2a) (A-l) 

f ° E2(3a + y)dy = f ° E2(3a - y)dy 
*s—a U—a 

= E3(2a) - E3(4a) (A-2) 

Ca-E2(a + y)dy= - - + E3(2a) + 2aE2(2a) 
J-a a 2 

4 e _ 2 ° 1 
+ - a 2 £ i ( 2 a ) (2a2 + 2a + 1) + — (A-3) 

3 3a 6a 

C-E2(a-y)dy=- [ay-E2(a + y)dy (A-4) 
«J -a a U -a a 

f" f ° El(\x-y\)dxdy = 4a-l + -E3(2a) (A-5) 
*/—a */—a 2 

^-ErQx-yDdxdy 
-a *s —a a 

= C" ("'-E1(\x-y\)dxdy = 0 (A-6) 
»/—a *J —a a 

X a r* a v v 
-•y--E1{\x-y\)dxdy = 

-a ft/ — a a a 

4a 1 e _ 2 a 

1 + — [4a3 + 6a2 + 6a + 3) 
3 2a2 6a2 l 

4 8 
+ - a 2£i(2a) + - aE2(2a) + 2Es(2a) (A-7) 

O O 

f ° C" E1(2a-y + x)dxdy = --2E3(2a) + E3(.4a) (A-8) 
ft/— a «/— a 2 

The expressions (A-l) through (A-4) are obtained by the manipulation 
of the relations given in reference [16]; the remaining expressions (A-5) 
through (A-8) are derived. 
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Differential Approximation of 
Radiatiwe 
Heat Transfer in a Gray Medium 
Axially Symmetric Radiation Field 
The differential approximation is used to analyze an axially symmetric radiation field 
for a gray medium within a finite, cylindrical enclosure. The medium emits, absorbs, and 
isotropically scatters radiant energy and is subject to a specified heat generation. Numer
ical solutions are obtained for the radiative heat flux and emissive power distributions. 
It is found that the accuracy of the differential approximation is of the same order for the 
axially symmetric and one-dimensional problems. 

1 I n t r o d u c t i o n 
The basis for analyzing a radiation field in a medium which absorbs, 

emits, and scatters radiant energy is the radiation transport equation 
[1-6]. It is an integral-differential equation in the spectral intensity 
of radiation and is usually subject to boundary conditions represented 
in an integral form. Methods for solving the transport equation in
clude the Monte Carlo technique [7-8], the zone method [9-10] and 
exact solutions [11-12]. All these solution methods are either very 
difficult or computationally expensive, even when the simplification 
of a gray medium is introduced. In order to simplify the analysis, one 
has to resort to approximate methods of solution. Because of its 
general nature and simplicity, the differential approximation has been 
applied in analyzing a radiation field [1-7]. 

One form of the differential approximation commonly used in cy
lindrical geometries is the spherical harmonics method (the PN ap
proximation) [2-6]. For pure radiation, one-dimensional problems 
have been solved by the P i approximation [6, 7,13, 14] and by the 
modified first order approximations [15-18]. The modified approxi
mations compare favorably with the Monte Carlo method [19] but 
their extension to coupled radiation exchanges or multidimensional 
problems is too involved. The accuracy of the P i approximation for 
the one-dimensional geometries [20-24] and for multidimensional 
cartesian geometry [25] has been studied. But the accuracy of P i ap
proximation has not been assessed for a multi-dimensional cylindrical 
geometry. Hence, the objective of this paper is to determine the ac
curacy of P i approximation for an axially symmetric radiation field. 
The approximate solutions will be compared with the exact solutions 
of Dua and Cheng [26]. 

2 Ana lys i s 
In this section, we consider a gray medium which absorbs, emits, 

and isotropically scatters radiant energy within a finite, cylindrical 
enclosure [20]. Assuming local thermodynamic equilibrium and a 
steady-state condition, the governing transport equation is given by 
[6,7,27]. 

r dr r \d</> ddj * dz 

+ (a+ a)ip = a $ + — f \j/dQ 
4ir J a 

(1) 

where \p and $ are the dimensionless intensity and Planck function, 
respectively. If equation (1) is multiplied by powers (zeroth and first) 
of lr, lz and U individually and integrated over a solid angle of 47T, one 
obtains 

(hti/si) = a(47r* - i/-0) (2) 
r ds; 

'Presently with the Faculty of Technology, Makerere University, Kampala, 
Uganda. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
September 13,1979. 

I d 1 
- — (hjipsisj) + - (hrsi + &osi)*prSi 
r ds,- r 

1 
(i<o-izz)?>rsi=-{a+ a)\Psi (3) 

where 

and 

^° = X ^ ^Si = J /^ . ' /V; = § WsikjdQ. (4) 

i,j = 1, 2, 3; hi = h$ = r; h% = 1; s\ - r; s2 = d;ss = z 

In the P i approximation, the second order moments \psisj are given 
by [7] 

tsiSj = - tf'oSij (5) 

Substitution of equation (5) into equation (3) for i/v and \pz leads 
to 

*r = 
1 di/'o 

.*. = - ; 
l di/'o 

(6) 
3(a + a) dr 3{a + a) dz 

For an axially symmetric radiation field d/d8 = 0; hence, combining 
equations (2) and (6) one obtains 

i>2\p0 , 1 di/'o d24>0 + _ _ ^ : + _ Y = _ 3 ( 1 _ X ) ( 4 7 r d ? - ^ 0 ) 
OT£ T or di;-

_ _ I f ^ o . _ 1 di/'o 
r~ 3 dr ~ 3 di) 

(7) 

(8) 

where T = (a + a)r, r\ = (a + a)z and X = <r/(« + u). For pure radiation 
conservation of energy gives 

U = 4TT$ - fa = S/oJ* (9) 

where S and U are the heat source and dimensionless heat source, 
respectively. 

Equation (7) is usually subject to boundary conditions of the 
form. 

f o ± E ; — = 4TT<IV' (10) 

Ei = 2(2 - cwi)IUmi, x = T,TJ; i = 1, 2 (11) 

where the minus sign is used for the lower boundary and plus sign for 
the upper boundary. 

2.1 Medium Emissive Power Specified. If the emissive powers 
of the medium and boundary surfaces are specified, equation (7) and 
its associated boundary conditions in equation (10) is solved numer
ically. To enable comparison with the exact solution [27], the medium 
emissive power was assumed to be uniform. Furthermore, all surface 
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emissive powers were also uniform at the same level as that of medium 
emissive power. Numerical results obtained by a finite difference 
method for non-scattering medium are shown in Figs. 1-4. 

2.2 Medium Subject to Heat Generat ion. The thermal con
ditions specified below are typical of those applied in combustion 
furnace problems. We let the medium be subject to a variable heat 
generation which is a function of axial coordinate 2 only. The lateral 
surfaces are diffuse emitters and reflectors, while the plane end sur
faces are radiatively adiabatic. Substituting equation (9) into equation 
(7)leads to 

i>T' T dr d?)2 ' 3(X - 1){/(TJ) (12) 

subject to boundary conditions 

i/'o ± JE; = 4ir*w,j at r\ or r2 

dr 

and ± Hj i/'o : 

d?) 
0 at ri = 0 or 7)2 (13) 

where the plus sign is used for the upper boundary. From equations 
(12) and (13) the solution may be obtained numerically or analytically. 
The latter form as obtained by superposition and separation of vari
ables is presented in the Appendix. 

3 Results and Discussion 
3.1 An Isotropic, Homogeneous Radiation Field. The radi

ative quantities displayed in Figs. 1-4 are due to medium emission. 
All surfaces are black and maintained at zero temperatures while the 
medium is isothermal. These are part of the thermal conditions which 
constitute an isotropic, homogeneous radiation field. Figures 1 and 
2 show the averaged intensity and radial heat flux along the centerline 
(r ,0) for a hollow cylindrical enclosure. Similar quantities are shown 
in Figs. 3(a) and 3(b) in the case of a concentric, cylindrical enclosure. 
The averaged intensity and the axial heat flux along the outer surface 
(R,z) are displayed in Figs. 4(a) and 4(b), respectively. 

The problem whose solution is shown graphically in Figs. 1-4 does 
not have a practical application. However, the solutions can be used 
to assess the accuracy of the differential approximation. For the 
purpose of comparison, results of Dua and Cheng [26] are included; 
they were obtained by numerical integration of a closed form exact 
solution. It is observed that the magnitude of the error depends on 
the optical thickness, location, geometry of the enclosure, and whether 
the quantity desired is the heat flux or the averaged intensity. The 
maximum percent errors range between 10 and 35. In general, large 
errors occur in a medium which is optically thin. For example, when 
TO = 0.1, the percent error is about 35 for the averaged intensity in a 
hollow cylinder at points (0,0) and (R,L) and about 30 at a point near 
midway between the inner and outer surfaces of a concentric cylinder. 
The percent errors in the radial heat fluxes at points (P,0) and 0-i,0) 
and the axial heat flux at (R,L) for the same optical thickness (0.1) 
are about 10, 30 and 35, respectively. In the medium with an optical 
thickness of 5.0, the maximum percent error is about 10 and occurs 
in the averaged intensity at a point (R,L). Smaller errors in the opti
cally thick media are expected since the diffusion or Pi approximation 
adequately model the actual behavior of the medium. 

The percent errors cited above are of the same order of magnitude 
as that observed for one-dimensional problems [20, 21]. A similar 
result was reached for multidimensional problems in cartesian ge
ometry. If one is dealing with pure radiation problems, such errors 
may not be acceptable and exact solutions need be sought. However, 
it must be remembered that exact solutions are difficult and tedious; 
the solutions used for comparison were obtained under special con
ditions which greatly simplify the exact form solution approach. For 
other thermal conditions, the simplicity of the differential approxi
mation may be a desirable advantage. It has been shown that higher 
approximations greatly improve results as compared to the P i ap
proximation [20, 21]. From the solutions shown in Fig. 1-4, it is con
ceivable that higher approximations would result in greater im
provements for axially asymmetric problems. 

3.2 Radiating Medium Subjected to a Heat Source. The 
physical problem considered in this section involves a radiating me
dium within finite hollow and finite concentric cylindrical enclosures. 
All boundary surfaces are black and maintained at zero temperatures. 
Results for a uniform heat source are shown in Figs. 5-6. 

Figure 5 shows the emissive power distribution along the center line 
(r,0) in a hollow cylindrical medium. The emissive power distributions 
along the centerline (r,0) of a concentric cylinder are displayed in Fig. 
6 for a radius ratio, rjr2, of 0.1. A general feature is observed from 
Figs. 5-6. It is seen that the emissive power distributions are almost 
uniform and the heat fluxes vary almost linearly when the medium 
is optically thin (TO = 0.1). In an optically thick medium (TO = 5.0), 
the emissive power varies more rapidly near the cold walls than within 
the medium resulting in a non-linear variation in the heat flux. This 
is explained by the fact that in an optically thick medium, the influ
ence of the cold wall is felt almost equally throughout the medium. 

For the purpose of comparison, solutions of one-dimensional 
problem are included in Fig. 5. These results can be calculated from 
a closed form exact solution [21]. It is observed that the emissive power 
along the centerline (r,0) increases when the length of the cylinder 
is increased. This is to be expected, as increasing the length results 
in more available thermal energy for absorption. It is also seen that 
an axially symmetric problem cannot be approximated by a one-
dimensional problem because the effect of length on the emissive 
power is not negligible at all three representative optical depths (0.1, 
1.0 and 5.0). 

3.3 Medium under Radiative Equilibrium. Figure 7 shows 
the emissive power distribution along the centerline (r,0) for a con
centric cylindrical medium under radiative equilibrium. All surfaces 
except surface (ri,z) were maintained at zero temperatures and there 
was no internal heat generation. I t is observed that the effect of de
creasing the radius ratio, ri/r%, is to lower the emissive power. This 
is so because the enclosed medium sees more of the cold outer surface 
than the inner surface. A decrease in the radius ratio exposes more 
of the medium to the cold outer surface resulting in low emissive 
power. 

4 Conclusions 
The problem of determining radiative transport in an axially 

symmetric cylindrical enclosure has been carried out by use of P i 
approximation. Thermal conditions considered include an isothermal 
medium, a specified heat generation and radiative equilibrium. The 

.Nomenclature-
B, Bw = medium and wall emissive powers, 

respectively 
Et = defined in equation (11). 
Hi, Hi = coefficients each 3/2. 
I = intensity of radiation 
/* = reference intensity. 
/„ = modified Bessel function of first kind 

and order n. 
Kn = modified Bessel function of second kind 

and order n. 
L = half length of the cylinder. 
Q = net radiant heat flux. 

r = coordinate variable 
R = radius of a hollow cylinder. 
•S = heat generation per unit volume 
U = defined in equation (2). 
z = axial coordinate variable. 
a = volumetric absorption coefficient. 
tw = surface emissivity. 
rj = (a + a)z. 
X = a/(a + a). 
a = volumetric scattering coefficient. 
T = (a + a)r. 

To = (a + o)R or (a + <T)(T2 - r{). 

$, $„, = dimensionless Planck functions, 
B/7r/*andB^/7r/*. 

i/'o = average integrated intensity, dimen
sionless. 

i/v, \pz = radiant heat fluxes in r and 2-di
rection, dimensionless. 

Subscripts 
r = radial direction 
2 = axial direction 
1,2 = lower and upper boundary layers 
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Fig. 2 Radial heat flux along (r, 0) in an isothermal hollow cylindrical me
dium. — exact [26] - - - Pi approximation 

Fig. 1 Average intensity along (r, 0) in an isothermal hollow cylindrical 
medium. — exact [26], - - - P^ approximation 
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Fig. 3(a) Average intensity along (r, 0) in an isothermal, concentric, cy
lindrical medium. — exact [26], - - - P, approximation 

Fig. 3 ( D ) Radial heat flux along (r, 0) in an isothermal concentric, cylindrical 
medium. — exact [26], — P^ approximation 
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Fig. 5 Emissive power along (r, 0) in a hollow cylinder with a uniform heat 
source. — infinite cylinder, exact. — finite cylinder, FVL = 1.0 
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Fig. 6 Emissive power along (r, 0) in a finite concentric cylinder with a 
uniform heat source 
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Fig. 7 Emissive power along (r, 0) in a finite concentric cylindrical medium 
under radiative equilibrium. — To = 2. — To = 0.5 

resu l t s for a n i so the rma l m e d i u m show t h a t t h e accuracy of P i a p 

prox imat ion , re la t ive to t h e exact solut ions , is of t h e same order for 

the axially symmetr ic and one-dimensional problems. Th i s conclusion 

es tab l i shed a mot iva t ion for us ing higher o rder app rox ima t ions in 

mu l t i d imens iona l p r o b l e m s [20, 24]. 
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APPENDIX 
An analytical solution to equation (12) subject to boundary con

ditions in equations (13) takes the form [21] 

io = foi + 0̂2 + f(y) (Al) 

Here the function /(?)) accounts for the nonhomogeneity in the dif
ferential equation due to the heat generation, while i/'oi and 1̂ 02 ac
count for the influence of the inner and outer radial bounday emissive 
power. They are explicitly given by 

f(n) = 3(X - l) J* J*l/(f)df dri, 

X • 

fdf 
Hxf = 0, at i) = ?ji 

dr) 
df 

.-/- + Htf = 0, at ri = 7)2 
Mr) 

(A2) 

1 f"12 

where -Am>l- = — — I Zm(i\)gi{n)d%Jm(Ei,Ti) 
RiNm J o 

-E;7m/l(7mTi) + /o(7m Ti) 

Z m = 7m cos7mT7 + Hx sin7m7/, tan-ym?/2 

jE<7mKi(7mTi) - Ko(7mT,) 

T m ( H 1 + H2) 
y^-HrHz 

Nm (7m2 + H1
2)7?2 + 

H2 

7m2 + H2
2; 

+ H i 

&(l)) = 47r*„,,; - / ( J J ) 

^01= E Am,1[/o(7mT)+Jm(£2,T2)/fo(7mT)]Zm(7;) (A3) 

^02= E Am,2[Io{ymT)+Jm{EhTi)K0(ymT)]Zm{ri) (A4) 
m = l 

fli = hhmTi) + Jm(En,Tn)K0{ymTi) 

+ Eiym[Ii(ymTi) - Jm(.En,Tn)Ki(ymTi)] 

for i = 1,2 and n = 3 — i. 

Note that for a hollow cylinder, one lets Am$i and Jm(Ei,Ti) equal to 
zero. Furthermore, symmetry about z = 0 plane requires .Hi to be 
identically zero. The medium Planck function $ and heat fluxes <pr 

and \pz are obtained from equation (Al) using equations (8). 
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Laminar, Mixed-Convection, 
Boundary-Layer, Nongray-Radiatiwe, 
Diffusion Flames 
The two-dimensional, laminar, mixed-mode convection (free and forced), boundary-layer, 
radiative, diffusion flame has been analytically investigated with special attention di
rected toward the nongray nature of the combustion products. The solution procedures 
include Shvab-Zeldovich approximation and von Mises transformation for the physical 
transport equations and the finite difference method for the computation of the trans
formed equations. The local radiative fluxes for nongray, gray and radiatively-ideal gases 
are prescribed in detail. Twelve parameters that govern the flame characteristics have 
been identified. Setting appropriate parameters to zero yields several limiting solutions 
which are compared with the reported results. In addition to extensive results of distribu
tions in the field variables and fluxes, the ratio of the radiation loss to the combustion en
ergy evolved was computed and a radiatively-ideal gas having behaviors similar to the 
nongray gases was identified. 

1 I n t r o d u c t i o n 
The classical problem of a laminar boundary-layer flame has been 

extensively investigated for the past two decades [1-9]. Unfortunately, 
since such a combustion system usually generates radiatively par
ticipating products, such as the soot, water vapor and carbon dioxide, 
the physical phenomena remain incompletely understood due to the 
nongray nature of the medium. In many studies, the gaseous radiation 
therefore was assumed to be negligible and the complexity of the 
gaseous radiation was avoided. In the present analysis, it is attempted 
to extend these previous analyses to a more realistic system in which 
the convection, radiation, mass transfer and the combustion 
coexist. 

When the gaseous absorption coefficients which are dependent on 
the wave length, temperature and partial pressures are considered, 
the complexity of the problem is greatly increased. Tien reviewed the 
application of the total band absorptances for carbon dioxide and 
water vapor to problems of this type in the infrared range [10]. This 
application, however, is restricted to isothermal and homogeneous 
systems. For nonisothermal and inhomogeneous systems, a certain 
scaling method is also needed for the computation of the total band 
absorptances [11-14]. In these scaling methods, the detailed infor
mation about the distributions of temperature and partial pressures 
must be known and the computation becomes very tedious. It has 
been found [6] that only peak values of the partial pressures and 
temperatures need to be used in calculating the intensities. Due to 
its simplicity, this peak-value scaling technique was adopted here. 

In addition to the absorbing-emitting gases, soot plays an important 
role in the radiative emission. The absorption coefficient of soot was 
theoretically derived using Mie theory [15]. Its spectral dependence 
was simplified to a simple function of the wavelength with good 
agreement with the experimental data [16-18]. Based on these results, 
a model of gray soot was further proposed [5]. In the present study, 
the gray model was used. 

Although the nongray characteristics of gases were intensively 
studied, these analyses have not been widely applied to combustion 
systems such as boundary-layer radiative flames. Reference [7] ap
pears to be the only work in which the similarity method was used to 
examine a nongray radiative stagnation flame. In the present paper, 
the mixed-convection, combustion, mass transfer and nongray ra
diation are simultaneously considered. In addition to obtaining the 
detailed distributions of field variables and their fluxes, we attempted 
to seek for a radiatively-ideal gas (having constant absorption coef-

1 Presently at IBM, General Products Division, San Jose, CA. 95193. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
November 8,1979. 

ficient) which yields similar local radiative flux as the nongray me
dium. Finally, the ratio of the radiative output to the heat of com
bustion, which is an important parameter to the fire-safety re
searchers, was also obtained for the plexiglass burning. 

2 G o v e r n i n g E q u a t i o n s 
The continuity, momentum, enthalpy, and species equations de

scribing a steady, two-dimensional, nongray-radiative, boundary-layer 
flame can be respectively written as 

bpu bpv 

bx by 
0 

bu du b / bu\ 
pu — +pv — = — \n—\+ g(p„ - p) 

bx by by \ byj 

bh dh b Ik bh\ 
pu — +pv~- = — \——\ + qc 

bx by by \CP by I 

bYi bYi b I 9 W . 
pu 1- pv = — \pu 1 + mi 

bx by by \ by 

+ Qr 

(la) 

(lb) 

(lc) 

(Id) 

where h = ST* CpdT and qc'" and rfi;"' are volumetric combustion 
heat and mass generation rates respectively, qr'" the gradient of the 
radiative flux and Y; the mass fraction of species such as the fuel, 
oxygen, water vapor and carbon dioxide. The boundary conditions 
for the flame over a vertically.pyrolyzing fuel slab as shown in Fig. 1 

Fig. 1 System schematic of a two-dimensional, steady-state, laminar, 
nongray-radiative, boundary-layer flame adjacent to a pyrolyzing fuel slab 
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u = 0,h = hw,Yf= Yfw, v = -D—'/(I - Yfw) aty = 0 (2a) 
dy I 

u = u_, h = 0, Yox = Y o x - a t y ^ c o (26) 

can be used to recover the primitive variables. 
After the Shvab-Zeldovich transformation of equations (lc, Id) 

and further normalization, we derive 

pu-
d J i 

dx pv + • 

It is noteworthy that the energy balance at the pyrolyzing wall 

k dh 

Cpdy 
(3) 

should not be considered as one of the boundary conditions in equa
tion (2a). This is because equation (3) is used to provide the infor
mation of the heat conduction into the solid. If this information is not 
of interest to us as in the present analysis, equation (3) is just a re
dundant boundary condition. 

Since qc'" is a complicated unknown function of several field 
variables, it is customary to introduce the Shvab-Zeldovich variables 
to eliminate qc'" [1 ~ 4, 7, 9]. The two assumptions associated with 
this approach are that the Lewis number for all species is equal to 
unity and that a single-step global chemical reaction takes place 
stoichiometrically. For laminar flames, we can further propose that 
the reaction zone is so thin like a sheet that the reactants do not 
coexist. Therefore, the computed Shvab-Zeldovich variable solutions 

d J i _ d ( k <iJi 

~dy " d y l C p dy / ' QPY, 

W 2 , o J 2 o / n dJ2 \ 
pu 1- pv = — pD 

dx dy dy\ dy I 

subject to the transformed boundary conditions 

J\ — J2 — li at y = 0 

Ji = J2 = 0, at y —* <= 

OQr" 

• hw dy 
(4a) 

(46) 

(5a) 

(5b) 

where J\ and J<i are defined in the Nomenclature. For nonradiative 
flames, i.e., qr" = 0, J\ and J2 are identical. The last boundary con
dition in equation (2a) must be transformed accordingly into 

0(0) : (6) 
Yfw + Ym«,VfMf/voxMox I dJ; 

1 - Yfw . \ i>y h=o 

Equations ( la, lb) remain unchanged except that the buoyancy 
term in equation (16) now takes a new form 

Table 1 Four wavelength-dependent components of the local radiative 
flux 

Symbol 

"1 

"11 

Qui 

«iv 

Mathematical Expression 

«/ 0 

W - ^ f j E3<KX)/0'
:"ebX(t»E2<t)dtdl 

2fo Jo" ^M^X ' t)dt iX 

Physical Representation 

wall emission after being attenuated by the medi
um existing along the path 0 -»- y 

reflective flux of the boundary-layer radiation 
arriving at the wall, being reflected by the 
wall and attenuated by the medium existing along 
the path 0 •*• y 

emission of the medium in the region from the 
wall to the location y 

emission of the medium in the region from the 
location y to the boundary—layer edge 6 

• N o m e n c l a t u r e . 

a = absorption coefficient, m _ 1 

At = total band absorptance for the ith band, 
pur1, peak value when overbarred. 

B = mass transfer number, (fiw — /?„)/(/3r -

ft.) 
D3 = third Damkohler number, QpYoxco/hw 

En(t) = exponential integral of order n 
e = emissive power, cal/m2-s 
/ = vfMf/v0XM0X 

/„ = volumetric fraction of soot 
F„ = maximum of/„ 
Gr = Grashof number, g{Tw — T„) 

X£&/v«,2T„ 
J\ = normalized Shvab-Zeldovich variable, 

(7 - 7«,)/(7„, - 7 . ) 
J2 = normalized Shvab-Zeldovich variable, 

(/S - p.)/Ww ~ /S-) 
£ = length of the fuel slab, m 
L = effective heat of pyrolysis, cal/kg 
in" = local mass flux, kg/m2-s 
M = molecular weight, kg 
Pr = Prandtl number, v/a 
Qp = heat of reaction per kg of oxygen, cal/ 

kg 

qr" = local radiation flux, cal/m2-s 
r = mass consumption number, {Yox„/Yfw) 

X (vfMf/i>0XMox) 
Re = Reynolds number, u«,£/va 

u = x-direction velocity, m/s 
v = y -direction velocity, m/s 
a = k/pCp, m2/s 
/3 = Shvab-Zelodvich variable, Yf/v/Mf — 

YoxhoxMox 

16Y = IhfMf, kg- 1 

7 = Shvab-Zeldovich variable, —h/Qpv0XM0X 

- Yox/voxMox 

5 = boundary-layer thickness, m 
Ur ^ 00/ I ID 

K(y) ; optical thickness, § a(z)dz 

v = kinematic viscosity, m2/s, or stoichio
metric coefficient 

f = radiation-convection number, 
oT^lpvAxJiu 

4> = m/n for a fuel CmHn0j 
X = ratio of the total radiation output to the 

total chemical energy evolved 
w = wave number, jum -1 

Subscripts 

ad = adiabatic 
6 = fuel burning or black body 
C = carbon dioxide 
/ = fuel 
8 = gas 
f£ = flame sheet 
N = nitrogen 
ox = oxygen 
p = pyrolyzing or combustion products 
r = radiation 
s = soot 
u = upstream 
w = wall of the pyrolyzing fuel 
wa = water 

Superscr ipts 

— = normalized on £ for lengths, u„ for ve
locities, p«u„ for mass fluxes, aTw

4 for 
radiative fluxes and Tw for temperatures 
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g(pjp - 1) = g(l/8r - 1)[D3 - Ji(D3 - 1)}, y < yfi 

= g(\IBr - 1) [D3(l + r)J2/r - (D3 - l ) J i ] , y > y,e (7) 

The radiative flux qr" shown in equation (4a) will be specified in 
detail in the following sections. 

3 Loca l R a d i a t i v e F l u x 
According to the approximation of isotropic media, the local radi

ative flux can be expressed [15,19] as 

o, = 3.6GTy/C2 (11) 

<ir"(x,y) = Qi + Qn + Qm-Qr (8) 

The mathematical expressions and the physical meanings of the 
four components are listed in Table 1. It is desirable to eliminate their 
wave-length dependence by introducing the total band absorptance 
for carbon dioxide and water vapor. We will present briefly such a 
procedure for Qi and simply list the final result for Qn, Qui and Qiv 
in Table 2. 

The computation of the exponential integrals contained in the 
expressions is cumbersome. Since E2(t) and E3{t) can be closely ap
proximated as exp (—2t) and J exp (—2i), respectively, [20], Qi is 
simplified into 

Qi = Qia + Qib 

where 

Qia - ew S 
Jo 

eb\(Tw) exp j axs(z)di 

(9) 

dX (10a) 

and 

Qib = -tw j eb\(Tw) exp - 2 J aXs(z)d2 

1 — exp JH (z)dz dX (106) 

The spectral absorption coefficient of soot, a\s, was shown [17,18] 
to be proportional to ful\ where f„ is the volumetric fraction of soot 
in the mixture. In the present analysis, fu is assumed as a linear 
function of y, i.e., Fvy/y/£, in the region between the pyrolyzing wall 
and the reaction zone and is assumed to vanish elsewhere. With this 
assumption, a>^ can be expressed as a^ = Gy/X where G = 5.52 Fv/yf£. 
Alternatively, using the gray soot approximation [5] and choosing the 
complex index of refraction to be 2 for the real part and 1 for the 
imaginary part, we can obtain a further simplified expression for the 
gray absorption coefficient of soot as 

Table 2 Eight wavelength-independent components of the local radiative 
flux. The overbar denotes peak values. C, and C2 are Planck constants. 

Component Mathematical Expression 

Q E OT 4expj - 500CJ zT(z)dzj 

"ib - ! » l ; s ^ < , » ) " ' ( - " i i ; ' ! ) * i w / " i 2 

QIIa 48(1 " Ew ) C lGy Z/ I C 2 / T ( Z ) + G ( y2 + Z ' J dZ 

Q I I I a * 8 c i G / " y zl [ C 2 / T ( z ) + G (y2 - *2) J dz 

<w -ir^M-!--^2--2)])x' 
i-l"o "±

 l ' 

«IV. 4 8 C 1 G / 6
 Z / ( c 2 / T ( z ) + G ( Z

2 - y 2 ) J 5 d z 

Qivb E Jy —-y s j »p [ -» : 

« (1 - c ) 

(2y - 2z)dz 

where C2 is the Planck second constant (1,44 X 10"2 m K). Using 
equation (11), we can reduce equation (10a) to 

Qia = e^ffTVexp •500G fy zT(z)di 
Jo 

The total band absorptance for the ith band is defined as 

Ai(y) = | 1 - exp - j a-Kg(z)dz\ da 

(12) 

(13) 

where a> is the wave number. Substitution of equations (11,13) into 
equation (10b) yields 

Qi* = tw ~ L ebw (Tw) exp •UiGy^M (14) 

where the nine bands are at 15/x(i = 1), 10.4/i, 9.4^, 4.3/u and 2.7/u for 
C0 2 and 6.3ju(t = 6), 2.1 ti, 1.87M and 1.38^ for H 2 0 . The total band 
absorptance can be expressed in terms of the band parameters [16, 
17] as 

ti + 2 
A(ti, £2) = c3£n tlf2(t2) 

[h + 2/2(t2). 
+ 1 

where 

h = (ci/c3)/)y, t2 = (e274cic3) [(PN + bPt)/P]n 

(15) 

(16) 

and fi(t2) - 2.94 [1 - exp (-2.6i2)]. The parameters a, c2, c3, b and 
n were specified in reference [21]. Similar derivations can be carried 
out for QH, QUI and Qiy. Their final mathematical expressions are 
listed in Table 2. 

4 Gray g a s A p p r o x i m a t i o n 
The computation of qr"(x, y) shown in equation (8) is very time-

consuming. One way of simplifying the computation is to introduce 
the Planck mean absorption coefficient defined as Jo e&xaxdX/o-T4. 
Based on the exponential wide-band model, the Planck mean ab
sorption coefficient has been calculated and plotted versus the tem
perature [10]. For computational convenience desired in the present 
analysis, those graphical results ac/Pc and awa/Pwa are empirically 
fitted by some simple explicit functions of the temperature [20]. These 
functions are free of X dependence, therefore qr"(x, y) can be reduced 
to 

q/'(y) = ^ o - T V e x p 

+ 2(1 - ew) exp 

- 2 fy a(z)dz 

- 2 Cya(z)dz C oT4(y)exp 
Jo \ Jo 

- 2 J a(z)dz a(y) dy 

+ 2 f y <rT 4 (z )exp - 2 C* a(t)dt 
JO Jz 

a(z)dz 

-2 f ffT4(z)exp - 2 CZ
a(t)dt 

U y tJ y 
a(z)dz (17) 

where a = as+ Pc<*c + Pwa^wa and as is given in equation (11). Using 
equations (17), the computation time is reduced to ~ 2 percent of that 
required by nongray formula. 

5 R a d i a t i v e l y - I d e a l G a s A p p r o x i m a t i o n 
In the present analysis, the radiatively-ideal gas is defined as the 

gas that has a constant absorption coefficient. There are three merits 
in studying the behavior of such an ideal gas: (1) The combustion 
system complexed by the radiative participation of real gases can be 
easily analyzed; (2) Ten dimensionless parameters can be identified 
and (3) The possibility of searching for a radiatively-ideal gas which 
exhibits similar behavior as the real gas can be examined. Therefore, 
with the constancy of the absorption coefficient, equation (17) can 
be further reduced to 
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q/'(x,y) = 2tu,ebu,E3(>c) + 4(1 - eJEaM j " "eb(t)E2(t)dt 

+ 2 C"eb(t)E2(K-t)dt-2 f ' eb(t)E2(t - n)dt (18) 
JO JK 

Equations (8,17,18) are the expressions for the local radiative flux 
with the fact that equation (8) has the least simplicity whereas 
equation (18) has the least accuracy. 

6 Recovery of Physical Quantities 
It is desirable to recover the physical quantities from the solutions 

Ji and Ji- Through straightforward algebra and use of definitions, 
the following expressions can be derived. 

hlhw = D3- Ji(Ds - I)' 

Y,/Yfw = (1 + r)J2 - r . 

hlhw = D3(l + r)J2lr - (D3 - l ) J j 

Yox/Yox- = 1 - (1 + r)J2/r 

where y/e is determined by the assumption that Y/ and Yox vanish 

simultaneously at the flame sheet; i.e., 

y ^yie 

y > w 

(19a) 

(19b) 

Jiiyft) = r/U + r) (20) 

Since the mass burning rate is equal to the diffusion rate of the fuel 
vapor into the reaction zone, we obtain 

mb" -PD 
ay, 
i>y 

dj. 
(21) 

y=yie 
= -pDYfw(l + r)-

y=yfe oy 

Equation (21) becomes very useful when we desire to find the ratio 
of the radiative output to the heat of combustion x-

The flame temperature can be derived from the enthalpy expression 
in equation (19a) or in equation (19b) as 

T,e = [Ds - Ji(y/e)(Ds - l)](Tw - T„) + T„ (22) 

The mass fractions of the species are also needed to calculate the 
partial pressures of radiatively participating gases. Nitrogen is an inert 
gas and therefore its normalized mass fraction, ( Y N — YN«>)/(YNU> — 
YN°.), satisfies the J2 transport equation if Y»iy is assumed constant. 
Consequently, 

YN(x, y) = J2(x, y)(YNw - YN„) + YN„ (23) 

. With the fact that the sum of Yfw, YN„, and where Y^o, = 1 — Y, 

to the combustion products (mainly CO2 and H2O) at the reaction 
zone is equal to that at the wall, it can be shown that 

pw equals unity and the assumption that the mass ratio of nitrogen 

YNUJ - ; 
7 « N U ~ Yfw) 

7VN + l l ^c + 4.5i/w 

where 

vN = J /O XM0 X(1 - Yox„)/M^Y0 

(24) 

(25) 

Once YN(X, y) is computed from equations (24, 25), the assumption 
that the fuel and oxygen do not coexist yields 

Yp = 1 - Yf - YN when y < yfe (26a) 

Yp = \-Yox- YN when y > y,e (26b) 

With the further assumption Yc/Y„,0 = M<zvtzlMwttvwa, we deduce 

Yc/Yp = 22J/C/(22VC + 9vwa), YmJYp 

(27a, b) 

Equations (23-27) are the procedures of recovering the species mass 
fractions from J2(x, y). Consider, for example, a combustion system 
having methane as the fuel and the atmospheric air (Yox» = 0.23) as 
the oxident with ;• = 0.2. Let J2(x, y) arbitrarily be 0.5. Since this value 
is larger than r/(l + r), the corresponding y location is smaller than 
yfe and equation (26a) should be used. The final results are listed in 
Table 3. 

If equations (lb, 4a, 46, 6, 8) are nondimensionalized, i.e., the 
coordinates x and y are normalized on £, velocities u and u on u . , 
radiative flux qr" on aTw

x and the temperature on Tw, all the gov
erning parameters listed in Table 4 will appear. Each of these twelve 
parameters is associated with a certain physical phenomenon. Only 
the mass transfer number deserves additional attention. It originates 
from the mass balance at the interface for inert systems [22] and is 
defined as (Y,„ — Ym)/(1 — Yw), where Y denotes the mass fraction 
of a certain species. In combustion systems, Y should be replaced by 
the Shvab-Zeldovich variable /3 since /? satisfies a source-free transport 
equation, and not Y. When the heat conduction into the solid is 
negligible and the flame is assumed nonradiative, B can be shown from 
equation (3) to be equal to (Qp Yox=° — hw)IL which has been widely 
used in the analysis of nonradiative flames. 

The present system can be readily reduced to several limiting cases 
by setting appropriate parameters to zero. The inert flow [23] can be 
generated by setting D3 to zero. At Re = 0 or Gr = 0, the system be
comes a pure free-convection flame [2, 3] or a pure forced-convection 
flame [1], respectively. At Ke = 0 and ew = 0, the flame becomes non
radiative [9]. For nongray systems, two additional parameters 4> and 
Fu are needed. 

7 Assumptions and Computational Accuracy 
In the present analysis, the following assumptions have been made 

to simplify the solution procedure: (1) £>qr"/dy » i)qr"/Z>x so that a 
marching finite difference method [24, 25] can be used. (2) The tem
perature and the fuel mass fraction are constant along the pyrolyzing 
wall. (3) The soot distribution is linear in y and y < yfe and is zero if 
y > yfe so that the complexity of the reaction kinetics is avoided. (4) 
The radiative flux is linearized in Ji as 

'• S\ + S2J\ 

where 

Si = q" 
dq" 

dJi 
and S2 

. Wr.u 
Jl.u dJi Jl,u 

(28) 

(29) 

Since no experimental data are available for comparison, the ac
curacy of the numerical result is tested using the following three in
direct methods. First, the solutions Ji(x, y), J2(x, y) and u(x, y) are 
functions of the 12 parameters only. If the ambient conditions and 
the fuel properties are varied such that the 12 parameters remain 
unchanged, these solutions should remain unchanged. Table 5 lists 
the input data of two typical computations so selected to yield the 
corresponding parametric values. The solutions J\(x, y), J2(x, y) and 
u(x, y) of these two computations have been found identical. The 
second method is to check the balance of fuel vapor throughout the 
boundary layer. Since part of the pyrolyzate from the wall is consumed 
in the reaction zone, the unburned fuel is convected downstream into 
the wake. For a system having B = 1.75, D3 = 1.5, Gr = 4.88 X 108, Pr 

Table 3 Typical values of species mass fractions 

Variable 

Equation from which 
the value is calcu
lated 

value 

VH 

Eq. (25) 

7.652 

Yf w 

Definition 
of r 

0.288 

Y 
N w 

Eq. (24) 

0.518 

\ 

Eq. (23) 

0.644 

Yf 

Eq. (19a) 

0.115 

Y 
P 

Eq. (26a) 

0.241 

Y 

Eq. (27a) 

0.133 

Y 
wa 

Eq. (27b) 

0.108 
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= 0.73, r = 0.20, Re = 1.33 X 104, ew = 0.5,8r = 0.4167, K( = 1.0 and 
£ = 2.36 X 10~2, the pyrolysis rate over the entire fuel slab is 1.943 X 
10~3 kg/s, the combustion rate over the entire reaction zone is 6.514 
X 10 - 4 kg/s and the unburned pyrolyzate flow rate at x = £ is 1.311 
X 10 - 3 kg/s. Therefore, the balance of the fuel species is found within 
± 1 percent error. The third method is to compare the present results 
with those reported in the literature only for limiting cases. These 
three methods thus partially tested the computational accuracy of 
the present result. 

8 Results and Discussion 
All the results presented here were computed using the parametric 

Table 4 Definitions and related phenomena of 12 parameters. The last two 
are for gray and nongray systems only. 
Parameter Name Definition Related Phenomenon 

Re Reynolds Numbe 

Gr Grashof Numbe: 

values chosen as: Re = 1.33 X 104, Gr = 4.88 X 108, Pr = 0.73, B = 1.75, 
£ = 2.36 X 10-2, tw = 0.5,6r = 0.417, ne = 1.0, r = 0.2, D3 = 5.596,4> = 
0.625 and F„ = 2.5 X 10~6 unless specified otherwise. For radia-
tively-ideal gas, 4> and Fu do not enter the problem. For gray and 
nongray gases, the optical thickness K( is a complicated function of 
the wave length, temperature and species partial pressures. More 
comprehensive results are presented in reference [20], 

Figure 2 shows the distribution of the local radiative flux computed 
using the exponential wide-band model for nine bands and three 
principal bands, respectively. The three principal bands are at 4.3/i 
for CO2 and 6.3yii and 2.7/i for H2O. Based on several numerical ex
periments, the contribution of these three-band radiations to the total 
nine-band gaseous radiations is found to be approximately 90 percent. 
The computation time per streamwise step, however, is drastically 
reduced from 55 s for the nine-band computation to 16 s for the 
three-band computation. Therefore, in the present analysis, the 
three-band approximation with the result multiplied by a correction 
factor of 1.1 has been used. 

Figure 3 shows the profiles of the local radiative flux computed 
using the gray gas model at x = 0.22 parameterized in F„. The flux 

Pr P rand t l Numbe 

; Transfer Number 

£ Radiat ion-Convection Numbe' 

E Wall Emiss iv i ty 

energy t r anspor t 

r a d i a t i o n and convectioi 

Kp Op t i ca l Thickness 

r Mass Consumption Number 

D Third Damkohler Number 

F Max. Soot Volum. Fract ion 

4> Ratio of C atoms to H atoms 

gaseous r a d i a t i o n (for 
r a d i a t i v e l y - i d e a l gas only) 

m/n for C H 0. nongray gaseous r a d i a t i o n 

Table 5 Input data for two typical computations in which the parametric 
values remain the same 

u (m/sec) 

t (m) 

V°K) 

T <°K) 

Q p ( c a l / k g ) 

k ^ c a l / m s e c °K) 

C ( c a l / k g °K) 

Computation 111 

1.5 > l l l 

0 .2 

720 

300 

0 .230 

0 .593 

0 .516 

3.16 x 10 6 

7.54 x 10~ 

310 

0 .5 

Computation 112 

2 

1.2 x 10" 4 

0 . 8 

856 

357 

0 .274 

0 .593 

0 .516 

3.16 x 10 6 

5.07 x 10~2 

310 

0 . 5 

1.25 

Paramete r 

Re 

Gr 

P r 

B 

5 

t 

0 
r 

Kl 

r 

D3 

F 
V 

* 

P a r a m e t r i c 
Value 

1.33 x 10 

4 .88 x 10 8 

0.73 

1.75 

2 .36 x 10" 

0 .5 

0 .417 

1.0 

0 .2 

5.596 

2 . 5 x l 0 - 6 

0 .625 

1 1 

9 BANDS 

3 BANDS WITH 

CORRECTION 
FACTOR I.I 

_ NONGRAY GAS 

J 

A 

t 

1 1 

/^V / V 
/ 
// // // 

1 
II 
II 

1 1 

-
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Fig. 2 Comparison of the local radiative flux computed using the nine-band 
model and the three-band approximation (with a correction factor 1.1) 
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enhanced by the emission of hot soot and gases gradually increases 
along the optical path. It finally reaches a maximum value near the 
reaction zone (y » 0.05) and then, being attenuated by the colder 
gases, starts to decrease. The effect of Fu on the radiative flux is such 
that, at large values of FD, the absolute values of the radiative flux 
become large. This is because, for sootier flames, more soot emission 
is lost to the surroundings as well as to the wall. 

In Fig. 4, some results obtained using the exponential wide-band 
model, the gray-gas approximation and the radiatively-ideal gas ap
proximation are compared. Figure 4(a) presents the flame tempera
ture as a function of x. It can be seen that the deviation of the flame 
temperatures obtained by the three models is less than 5 percent. It 
is also interesting to compare these values with the theoretical adia-
batic flame temperature. Let us consider that masses including i<OIMOI 

of oxygen at T„, V^MN of nitrogen at T„ and v/Mf of fuel at Tw react 
in an adiabatic control volume to generate the heat of reaction 
QpfoxMox and the combustion products including VQMQ of CO2, 
j/waMwa of H20 and VNA/N of N2 at Tf£. By the first law of thermo
dynamics, it can be shown that 

' f£M • fYo*~ + D3 

Yox„ (1W&-OX + 9vwJl6vox - 1) + 1 
(30) 

With substitution of / = 0.516, Yox- = 0.23, D_s_= 5.596, vc = 5, vox 

= 6 and vwa = 4, Tf£M is found to be 2443 K, or Tf£M = 3.393. Since 
the present system loses its energy by convection and radiation, the 
actual flame temperatures appear much lower than this theoretical 
adiabatic value. Figure 4(b) shows the pyrolysis flux and the flame 
stand-off distance versus 3c. Again, the results obtained by the three 
models agree well with one another. Therefore, we can tentatively 
state that it seems possible to find a radiatively-ideal gas which has 
a constant absorption coefficient and exhibits similar flame charac
teristics as the nongray gases. 

In Fig. 5, the flame temperature and the radiation loss computed 
using the gray gas model are plotted versus x for various values of 4>. 
From this figure, we can evaluate the total radiation loss from the 
system, i.e., So 9r»" dx. The influence of 4> on Tfe and qr„" should 
also be noted. At larger values of 0, more CO2 is produced and the 
effective emittance of the gas becomes larger; therefore, the radiation 
loss increases and the flame temperature drops. For the chemical 
reaction such as 
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Fig. 4 Comparison of the flame temperature, pyrolysis flux and the flame 
stand-off distance computed using the three-band nongray gas model, gray 
gas model and the rad!atively-ideal-gas approximation 

CmHnOj + vox02 + v^N2 — mC02 + - H20 + vNiV2 (31) 
2 

it is interesting to note that / can be expressed in terms of <j> as 

/ = vfMf/voxMox = [12<t> + 1 + 16(/AO]/[320 + 8 - 16(//n)] (32) 

In cases of the hydrocarbon-fuel burning 0=0) , equation (32) reduces 
to 

/ = (120 + 1)7(320 + 8) (33) 

Equation (33) dictates that, for 0 < 0 < °°, values of/ be chosen 
between xk and %. Since the mass consumption number r is defined 
as /Yox-/Y/ui, care must be taken not to violate equations (32,33) when 
the value of r is assigned. 

In Fig. 6, the pyrolysis flux of the radiatively-ideal gas is shown as 
a function of x parameterized in Re. Since mp" is normalized on p„u*,, 

li= 

a o 20 — 

1 1 1 1 
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~* va> ~ 
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Fig. 6 Pyrolysis flux versus x parameterized In Re for radiatively-ideal 
gases 
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care should be taken when the effect of Re on rhp " is examined. It is 
not difficult to show that the dimensional quantity, rhp", actually 
increases as u„ increases. Furthermore, Emmons' solution [1] for Gr 
= 0, Ke = 0, tw = 0 and Pr = 1 is plotted for comparison. It agrees well 
with the nonradiative result obtained from the present analysis. These 
two nonradiative results are shown much lower than the radiative 
counterpart. The reason lies in the fact that the radiative feedback, 
in addition to the convective heat transfer, enhances the pyrolysis. 

The burned fraction of pyrolyzate rht,"lrhp" is plotted versusx in 
Fig. 7 for various values of r. The trend that these fractions remain 
fairly constant along x suggests that rhp" and m&" both decrease in 
a similar fashion with increasing x. Furthermore, for larger values of 
r, more abundant oxygen is available for reaction with the fuel vapor, 
and therefore more fuel vapor is burned. The result at r = 1.0 for the 
nonradiative case {lie = 0 and ew = 0) is also drawn as the dashed line 
for comparison [4]. This burned fraction is overpredicted by ~ 5 per
cent of the present result probably due to omission of the radiative 
feedback which enhances the pyrolysis. From this figure and Figs. 5 
and 6, the ratio of the total radiation output to the total chemical 
energy evolved can be evaluated as 

X = J qr~"dxl J rhb"Qp(v0IM<JvfMf)dx 

= 1.68 X l(r3 /4.42 X 1CT3 = 38 percent 

The values of % for sets of various parametric values can also be 
obtained using the present analysis. This information is particularly 
valuable to fire-safety researchers. 

9 Conclusion 

The laminar, two-dimensional, boundary-layer flame was analyzed 
with special attention directed to the nongray gaseous radiation. 
Based on the computed result of the local radiative flux, it was judged 
that the three-band approximation (4.3/i for CO2, 6.3/i and 2.7/x for 
H20) yielded a solution close to that obtained by the nine-band model 
(Fig. 2). Without loss of accuracy, the three-band approximation saved 
considerable amount of computation time. Using the Planck mean 
absorption coefficient, we find that the gray-gas model provides even 
simpler computation procedures with satisfactory accuracy (Fig. 4). 
In this model, however, the absorption coefficient remains to be a 

function of the medium temperature. The simplest model having a 
radiatively-ideal gas was thus proposed. To find a constant value of 
the absorption coefficient which best describes the nongray nature, 
we conducted several numerical experiments. For ke = 1.0, we found 
that the solution of the radiatively ideal system agrees with that of 
the present nongray system (Fig. 4). This agreement suggests that, 
in the future, the complicated nongray systems may not have to be 
investigated directly if an empirical relation such as ke = /(Re, Gr, 
Pr, B, £, cw, 8r, r, D3, F„, <f>) can be obtained. Finally, the quantity x 
for the system shown in Fig. 1 has been analytically obtained. This 
analytical value can be compared with the experimental result if 
available. 
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Applications 
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The efficient extraction of a high-temperature working fluid from a coal-firedjluidized 
bed combustor depends, to a great extent, on the design of the immersed heat exchanger. 
Of special importance is the solidity of the cooling tubes immersed in the bed. The interac
tion between increasing solidity and the consequent degradation of proper fluidization 
and circulation is being studied at the New York University fluidized bed combustion fa
cility. In a preliminary set of experiments it was found that under certain conditions, the 
solidity of heat exchanger in the bed may be significantly increased, giving designers an 
additional variable parameter. 

Introduction 
The combined cycle process, utilizing coal burnt in a pressurized 

fluidized bed combustor may make a significant impact in the next 
decade as an efficient, clean, cost effective producer of large quantities 
of electricity. A number of industrial concerns are presently under
taking research and development efforts investigating various tech
niques to produce electricity in such pressurized vessels. At present, 
atmospheric pressure units are in the early stages of utilization for 
both industrial and utility applications. 

The optimization of the performance of a coal-fired fluidized bed 
combustor is possible only if a thorough comprehension of the ex
tremely complex flow patterns, and the parameters which can sig
nificantly effect such patterns, exists. For the past four years, New 
York University has been studying such flow patterns in two, 1 ft dia 
fluidized bed combustors (one, a gas fired and the other a coal fired 
unit) with a view toward establishing criteria to aid the designer of 
such vessels, particularly in establishing the heat exchanger config
urations which optimize performance. A comprehensive description 
of the one-foot-diameter gas fired facility can be found in reference 
[1]. Previous research has attempted to quantify the effects on heat 
transfer of such parameters as flow profile at the distributor plate, 
bed pressure, the ratio of settled bed height to bed diameter, and heat 
exchanger geometry (vertical bundles, horizontal bundles, finned and 
unfinned tubing). The results of these investigations can be found in 
references [1-5]. The following summarizes the major results utilizing 
bed particles of 1 mm or larger. 

1 Preferential flow distribution at the distributor plate can sig
nificantly improve the overall heat transfer in a shallow bed. 

2 The effect of pressurizing a fluidized bed can for some geome
tries, result in as much as a 75 percent increase in heat transfer, for 
both long and short low solidity heat exchangers in deep or shallow 
beds. 

3 The utilization of external vertical fins on vertical heat ex
changer tubes has a minimum impact on heat transfer; in fact, at el
evated pressure the reduction in heat transfer coefficient is so severe 
that only a small increase in heat extraction is found. 

4 Heat exchanger configurations in deep beds (where the ratio 
of settled bed height to bed diameter is large) may experience highly 
nonuniform local heat transfer coefficients as a function of bed height. 
A low heat transfer coefficient at the bottom section of the bed, re
sulting from poor circulating of particles, may then be followed by an 
optimum heat transfer coefficient in the middle of the bed which may 
then be followed by a region of low heat transfer at the top of the bed. 
Thus, the overall performance of long heat exchangers in deep beds 
may be somewhat below expectation. In addition, problems associated 
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with improper fluidization near the grid may arise, in particular, the 
possibility of local hot spots near coal injection points, leading to 
higher NOx levels and tube fouling. 

In the investigations performed with the gas fired combustor, uti
lizing methane eliminated the problems associated with coal com
bustion. Working at reduced bed temperatures (on the order of 300°C) 
simplifies data acquisition. Heat transfer results miss the radiative 
component (15-25 percent of the total) but otherwise the effect of bed 
temperature is not significant (see Fig. 1) for large particles. Of course, 
for small particles (significantly less than 1 mm in mean diameter), 
the effect of temperature on heat transfer has been observed to be 
pronounced in a number of studies. 

There is some controversy with respect to the reasons for the in
crease in heat transfer coefficient with pressure utilizing large parti
cles. A number of studies (e.g., [6-10]) have attributed the pressure 
effect to an increase in the convective heat transfer component. The 
previous results of the NYU program have indicated that for the op
erating conditions studied, the increased convective heat transfer 
could not explain the large increase in overall heat transfer. At the 
same time it was noted that bed expansion decreased substantially 
with pressure (for a given mass flow rate) indicating a significant 
suppression of the slugging tendency and a reduction in the bubbling 
phase. 

The heat transfer model proposed by Glicksman and Decker (ref
erence [12]) indicates that the effect of bed expansion can be of prime 
significance, and they scale the Nusselt number by the bed void 
fraction. They note that, while at high Reynolds number the heat 
transfer rate increases with gas density (and thus with pressure) 
through the effect on the convective component, at low Reynolds 
number, the heat transfer is influenced by gas density (or pressure) 
mainly by the effect on bed expansion (since conduction is indepen
dent of gas density). For the studies described here, the Reynolds 
number is usually on the order of tens to hundreds and, thus, the effect 
of bed expansion is extremely significant and, in some cases, pre
dominant. Therefore, we have concluded that in our experiments, the 
increase in heat transfer with pressure, was due to a large extent to 
the suppression of slugs and bubbles since a large percentage of the 
heat transfer was conductive. 

Rationale for the Study 
A parameter which greatly affects the heat that is extracted from 

a coal fired fluidized bed is heat exchanger solidity (for a vertical 
configuration, defined as the ratio of heat exchanger cross section to 
boiler cross section area). A greater solidity can increase the working 
fluid (water or air) temperature or mass flow rate if the heat transfer 
coefficient can be maintained, or it can decrease the height of the heat 
exchanger bundle. On the other hand, increasing solidity will, even
tually, impede circulation, thus decreasing the heat transfer coefficient 
significantly. 
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It has thus been the practice of most designers to design fluidized 
bed combustors with a low overall heat exchanger solidity, thus in
suring an adequate level of fluidization. When a horizontal configu
ration is used, such as the design used in the British studies [11], the 
cross-section solidity is large (between 20 and 40 percent), but the 
volumetric solidity (the ratio of heat exchange volume to bed volume) 
becomes the important parameter, since there can be significant 
spaces between horizontal bundles. The British configuration yields 
a volumetric solidity of less than 10 percent, somewhat in line with 
solidities envisioned by designers utilizing vertical configurations; 
although the recent experiments of Curtiss Wright [13] have been 
conducted at somewhat higher solidities. 

While the solidity of the heat exchanger to be utilized is an im
portant parameter, there has been little research of a systematic na
ture to assess how solidity effects the heat transfer coefficient, all other 
parameters remaining the same. It was, therefore, decided that such 
a study would be conducted in the N.Y.U. gas fired combustor de
scribed in reference [1]. The initial results of this investigation are 
reported in the next sections. In the final section, conclusions based 
on these results are presented. 

The Experimental P r o g r a m 
The basic heat exchanger configuration which has been utilized to 

study the effect of increasing solidity on heat transfer is a 6.2 ft (1.89 
m) 2.38 in. (6.05 cm) o. d. vertical U-tube mounted so that the legs of 
the pipe are 6 in. (15.25 cm) above the distributor plate (where the 
air enters from below). This configuration represents a solidity of 8 
percent. Overall and local heat transfer data were recorded as a 
function of bed pressure, settled bed depth (depth of bed prior to 
fluidization), and superficial velocity, utilizing water as the working 
fluid. By mounting a second U-tube in the bed and rerunning the 
entire matrix of experiments, the effect of doubling the solidity (to 
16 percent) on overall heat transfer coefficient has been determined. 
Four levels of bed pressure (1,3.7,5,7) atm and two bed depths 27 in. 

(0.68 m) and 55 in. (1.4 m) have been tested for a range of superficial 
velocities. The 27 in. (0.68 m) bed will be referred to as the shallow 
bed, the 55 in. (1.4 m) bed, the deep bed, in what follows. The particles 
in the bed were limestone with average initial diameters in the 
1400-2000 mm. range. It is emphasized here that what follows are 
initial results of the investigation. Additional data needed for a 
complete quantitative analysis is in the process of being produced. 

Results of the Study 
Figure 2 presents heat transfer coefficients as a function of bed 

pressure for the shallow bed at 8 percent solidity (one U-tube). The 
increased heat transfer with pressure has been established, as stated 
previously, to be mainly due to the suppression of bubble growth or 
slug development with pressure in the Reynolds number range 
studied. Figure 3 presents the data for the deep bed at 8 percent so
lidity. In Fig. 4, the variation in local heat transfer with height for the 
shallow and deep beds at atmospheric conditions is presented. These 
data were determined utilizing thermocouples mounted inside the 
tube along its height. The causes and effects of these different dis
tributions in shallow and deep beds have been discussed previously 
[4, 5] and have led to conclusion (4) of the Introduction. 

Figures 5 and 6 present the effects of pressure on heat transfer in 
a shallow and deep bed with the solidity increased to 16 percent (by 
an addition of a second U-tube mounted perpendicular to the first 
one). The favorable effect of pressure on heat transfer is still 
present. 

Figures 7 and 8 compare the two solidities at atmospheric condi
tions in a shallow and deep bed. It can be seen that the heat transfer 
coefficient may be slightly greater at 16 percent than at 8 percent at 
atmospheric conditions, even though one would expect flow circula
tion to be impeded somewhat at such a high solidity. The effect of 
increased solidity may have a favorable effect by causing bubble and 
slug suppression. Thus, the 16 percent solidity case may indicate a 
higher heat transfer coefficient. This is in line with the tests at the 
National Coal Board [11]. The British investigators reported little 
increase in heat transfer coefficient with pressure. This may be due 
to the fact that their horizontal tube bundles have extremely high local 
solidity (30 to 40 percent) which suppress bubble growth and inhibit 
slug development. Therefore, their data at atmospheric conditions 
indicate high heat transfer coefficients since even the atmospheric 
tests are probably in a smaller bed expansion regime. Our atmospheric 
data at 16 percent seem to support this conclusion. 

Figures 9 to 14 present comparisons of the 8 and 16 percent solidity 
data at elevated pressures in the shallow and deep beds. It can be seen 
that at elevated pressures, the heat transfer coefficients are the same 
at the two solidities. Data from tests utilizing local probes (such as 
that presented in Fig. 4) indicate that the fluid mechanics and flow 
circulation in the bed at elevated pressure for the two heat exchanger 
configurations is very much the same, and thus the problems associ
ated with poor fluidization expected at high solidity are not present 
when the solidity is increased to 16 percent. 

Summary and Conclusions 
Initial results of a test program to assess the effect of heat exchanger 

solidity on heat transfer in a coal fired fluidized bed indicates that the 
rule of thumb criterion of keeping the solidity below 10 percent in 
order to keep a good level of fluidization in a bed using large particles 
is too conservative. In fact, at atmospheric conditions, the heat 
transfer coefficient may be greater at higher solidities since the higher 
density of the heat exchanger tubes can lead to decreased bed ex
pansion. 

Additional testing must be carried out to determine at what level 
of solidity, degradation of performance will begin to occur. At the same 
time, though, the indication that a 16 percent solidity can achieve the 
same overall heat transfer coefficient as the 8 percent case is signifi
cant. If a designer must have a certain fixed flue-gas temperature so 
that the mass flow of clean working fluid is fixed, doubling the solidity 
would alleviate the problems of vibration and stress present for long 
heat exchangers (for pressurized applications), since the heat ex
changer length could be halved. On the other hand, if the flue gas 
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temperature is not a fixed parameter, doubling the solidity indicates 
that twice the mass flow of clean working fluid could be extracted (or 
if the clean working fluid is air, an equivalent mass flow could be ex
tracted at a much higher temperature). 

As a matter of fact, the coal (and air) feed rate can be increased if 
a higher solidity is used, yielding a higher clean working fluid flow rate 
for a given exhaust temperature. Thus the designer can use solidity 
as a variable parameter increasing his flexibility with respect to de
sign. 

Once the optimum level of solidity of heat exchanger in the bed is 
determined for a given bed configuration, one can address the ques
tion of solidity variation with height. Suppose, for example, that a 20 
percent solidity is determined as the level above which degradation 
in heat transfer occurs. It may well be possible that at intermediate 
or upper levels of deep beds, the solidity can be increased significantly 
above 20 percent for deep beds since, for deep beds, flow circulation, 
one to two bed diameters above the distributor plate, is of better 
quality. Thus, heat exchanger staging, where the solidity increases 
with height, might be an effective means of improving perfor
mance. 

It must be emphasized that the results presented here were for only 
two solidities and gathered in a one foot diameter facility (at reduced 
temperature). While we feel that the effect of increased solidity on 
heat transfer is qualitatively as shown herein, quantitatively, the ef
fects may be somewhat altered in a larger unit. Obviously, in a larger 
coal-fired bed the changes in fluid mechanics will yield changes in heat 
transfer levels, especially since the effect of bed diameter on bed ex
pansion may be significant. New York University plans to begin 
construction of a 3 ft dia coal-fired pressurized vessel in the near fu
ture to ascertain such effects of scale. 
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Heat and lass Transfer in Fiied 
Beds at Low Reynolds Numbers 
In a fixed or fluidized bed at low particle Reynolds numbers, the overall or effective Sher
wood and Nusselt number has been found by many investigators to be much less than 
unity. The limiting value of the particle Sherwood or Nusselt number based on local con
centration or temperature differences is shown to be equal to or greater than unity. An 
analytical model was established using realistic packed bed geometries to allow for diffu
sion in the flow direction, channeling due to nonuniformities in bed voidage and different 
particle sizes, and inaccuracies in the experimental measurements. The predicted values 
of the effective Sherwood and Nusselt numbers are found to agree closely with experimen
tal measurements for gases and liquids. Diffusion is shown to be the primary mechanism 
for the fall-off in the effective bed characteristics. 

Introduction 
Since the pioneering work more than three decades ago of Gamson, 

et al. [1] on evaporation of water from celite spheres into air, a large 
number of investigators have studied mass and heat transfer from 
particles to surrounding fluids in fixed and fluidized beds. A number 
of different experimental techniques have been used for gases and 
liquids; a majority of the experiments were done under steady-state 
conditions. Correlations and review of the experimental data are 
found in a number of reviews such as references [2-6]. For particle 
Reynolds numbers greater than 50 the trend of the Sherwood number 
and Nusselt number has been more or less well established. The 
Sherwood number is consistently higher than that given by the 
Ranz-Marshall equation for a single sphere in an infinite media [7]. 
This is also true for the Nusselt number. 

At low particle Reynolds numbers experimental results have been 
controversial. Early experiments on packed beds indicated that the 
calculated Sherwood number approached zero as the Reynolds 
number became very small. Moreover, the results of many investi
gators varied by an order of magnitude with recent results by Hsiung 
and Thodos [8] achieving higher Sh values at low Re. Nevertheless, 
recent data still indicate a decrease in the Sherwood number as the 
Reynolds number is reduced toward zero. Mass transfer experiments 
between particles and liquids are less definitive; in general, most of 
the data for liquids yield a Sherwood number which tends to fall at 
small Reynolds numbers. Heat transfer experiments at low particle 
Reynolds numbers have also tended to show the same kinds of be
havior; the results for the heat transfer tests are further complicated 
because of conduction between adjacent particles. Much of the vari
ation in the experimental data is due to the use of the effective 
Sherwood number based on the overall bed behavior. The effective 
Sherwood number is, in general, different from the particle Sherwood 
number which is based on local mass transfer rates and concentration 
differences. The former will be influenced by bed nonuniformities and 
backmixing or diffusion in the flow direction. 

Many investigators have attempted to explain the behavior of 
particle mass transfer in fixed and fluidized beds at low Reynolds 
numbers. Some authors have constructed models to show the effective. 
Sherwood number falls at low Reynolds numbers while the particle 
Sherwood number remains constant. The two mechanisms most 
commonly used to explain the deviation are nonuniform flow chan
neling in the bed or diffusion in the flow directions. No paper to date 
has considered both of these mechanisms together. 

Recently a model formulated by Nelson and Galloway [9] has re
ceived considerable attention. The individual particle Sherwood 
number predicted from penetration theory was found to approach 
zero for low values of Reynolds numbers. However, penetration theory 
is not appropriate at the low Reynolds numbers [10] and, as Schliinder 

[11] points out, the boundary conditions which Nelson and Galloway 
use are incorrect. Rowe [12] observed that penetration theories do not 
predict the correct trend of the Sherwood number with changes in 
voidage. Its experimental confirmation was unsuccessfully attempted 
by Koloini, et al. [13]. In a later section Nelson and Galloway's work 
will be considered in detail. 

In references [14-19] various mechanisms are examined to explain 
the low Reynolds number result. 

An attempt will be made to include all of the important mechanisms 
into a single model for the mass transfer in a bed. Particular care will 
be used to distinguish between the effective Sherwood numbers for 
overall bed performance and the local or particle Sherwood number 
for mass transfer from an individual particle to the surrounding fluid. 
Results will be given using parameters which are representative of 
realistic bed geometries. 

Proper Order of Magnitude of the Particle Sherwood 
and Nusselt Numbers 

The local heat transfer or mass transfer coefficients for the indi
vidual particles when all particles in the bed are active is defined as 
the heat or mass flux per unit area from the particle to the surrounding 
fluid divided by the local characteristic driving potential difference. 
For heat transfer this driving potential difference is the surface 
temperature less the bulk temperature of the fluid in the flow channel 
adjacent to the surface. An analogous concentration difference is 
appropriate for mass transfer. At low Reynolds numbers the mecha
nism for the transfer of mass or heat from the surface is diffusion. The 
lower limit for the transfer coefficients must be 

h > kf/5max, k > D/5n (1-2) 

where 5m a x is half the average interstitial distance between neigh
boring particles. Then, 

Shp(Nup)>dp/6„ (3) 

This expression is also true for laminar flow through ducts. As the 
voidage of the bed increases, the lower limit given by equation (3) is 
too conservative. As the voidage approaches unity the right-hand side 
of equation (3) approaches a value of 2.0. Similarly, the Ranz-Marshall 
correlation should represent the lower limit for (Nup) and (Shp). 

Prediction of Effective Sherwood Number 
We are still left with the divergence between the particle Sherwood 

and Nusselt numbers, which should approach values greater than or 
equal to unity at small Reynolds numbers, and the various experi
mental results which indicate that the effective Sh and Nu approach 
values one or more orders of magnitude below unity. The former is 
defined as 
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The effective Sherwood number for a large bed cannot be defined as 
easily. If fluid flows through the bed in steady one-dimensional plug 
flow, and there is no diffusion or backmixing in the flow direction, the 
concentration of the fluid leaving the bed, Ce can be expressed as 

-= exp 
ShEAD 

dpuAc. 
(5) 

Most of the experimental measurements of Sh are found by mea
suring the exit, entrance and surface concentrations for the bed and 
deriving the value of She. However, She is only equal to Shp when 
all of the assumptions needed for the derivation of equation (5) hold ^ 
true. When these conditions do not hold, She and Shp will differ and 
the accuracy with which Shp can be derived from experimental data 
depends on how closely the true physical conditions of the experiment 
are accounted for. 

In the balance of this paper, we will examine low Reynolds number 
flow through a fixed bed which has a geometry typical of that used 
in experimental investigations. Conditions will be identified which 
tend to cause She to deviate from Shp. 

First we will examine the consequences of nonuniform voidage or 
particle size across the bed surface. The voidage near the walls of a 
packed bed is considerably larger than in the rest of the bed [20], 
Figure 1 illustrates the results of a simplified model for the voidage 
variation across the bed cross section for a constant voidage in the flow 
direction. The ratio of the superficial velocities for the two regions 
was found by applying Ergun's equation to each region. The Reynolds 
number is based on conditions in the majority of the bed, which has 
a voidage of 0.4. Typically the region of the bed near the walls has a 
voidage of 0.7 or greater. Since the resistance of the bed wall and radial 
mixing between regions of different voidage are not included, the 
results shown in Fig. 1 should be taken only as an upper limit for the 
velocity ratio between the two regions. If the bed was made of particles 
of two different sizes and the particles were segregated within the bed, 
the flow through these regions would be different. However, if parti
cles in one section of the bed had twice the diameter of those in the 
other section, the velocity ratio at low Reynolds numbers is less than 
twenty percent of that for voidage variations as shown in Fig. 1 with 
local voidage of 0.7 and 0.4, respectively. 

A second major parameter which may influence She is the axial 
diffusion through the bed. As the Reynolds number is reduced, axial 
diffusion becomes progressively more important in comparison to 
convective energy or mass transport. 

P a c k e d B e d Mode l 
A model of a packed bed will be set up using a reasonable value for 

the individual particle Nusselt and Sherwood numbers, i.e., near unity 
at low Reynolds numbers. The effects of voidage variation, diameter 

O I—i i i mm i i i mill i i • nun 
0.01 0.1 10 

i i i nun , 
100 1000 

Particle Reynolds Nurnbar in Region l(Ulfpj 

Fig. 1 The velocity ratio between two regions of different voidages with the 
same applied pressure difference 

variation, and axial diffusion will first be presented individually and 
then the effects will be combined. 

For the overall solution, the bed will be assumed to consist of two 
regions each with a constant fraction of the bed cross section, a i , and 
a2, for all heights (see Fig. 2). Each region has different but uniform 
voidage ei and c2 and particle size dPii and dp,2, respectively. The 
average superficial velocity u is known. 

The equation governing the mass transfer with axial diffusion is, 
for each of the separate regions of the bed 

d2Cj 

' dz* ' 

dCj 6(1 - (j 

dz d„ i 
Xkj(Cj - C.) = 0 (6) 

Boundary conditions for both regions are: At z = 0, the bed entrance, 
there is no net solute flux; and at z = L, the bed exit, the axial con
centration gradient is zero. Lateral diffusion between the two regions 
of the bed is neglected. 

The solute concentrations are found separately for the two regions 
and then combined to obtain the mass average exit concentration Ce 

for the entire cross section. 

• N o m e n c l a t u r e . 
A = total surface area of active particles in 

the packed bed (m2) 
Acs = cross-sectional area of packed bed 

(m2) 
a - fraction of cross section for region of the 

bed with respect to the total bed cross 
section 

C = solute concentration in the fluid 
(moles/m3) 

CB = bulk concentration of fluid in the 
neighborhood of a particle (moles/m3) 

Ci,Ce = inlet and exit solute concentrations 
in the fluid for the packed bed model 
(moles/m3) 

Cs = concentration of the solute in the fluid 
at a particle's surface (moles/m3) 

D = molecular diffusion coefficient (m2/s) 
De = effective axial diffusion coefficient 

(m2/s) 
dp = particle diameter (m) 

h = heat transfer coefficient (W/m2K) 
k = mass transfer coefficient (m/s) 
kf,ks = conductivities of fluid and particle 

(W/mK) 
L = height of the packed bed (m) 
N = mass transfer per unit particle surface 

area (moles/m2s) 
Nu = Nusselt number hdplk; 
Pr = Prandtl Number vcp/kf 
Rep = particle Reynolds number = udp/v 
Sc = Schmidt number = v/D 
Shp = individual particle Sherwood number 

defined by equation (4) 
Sh# = effective particle Sherwood number in 

a packed bed defined by equation (5) 
t = time variable (s) 
T = surface renewal period (s) 
u = superficial velocity (m/s) 
z = vertical length variable (m) 

a = defined by equation (7b) 
/? = defined by equation (7c) 
7 = defined by equation (Id) 
8 = thickness of the fluid shell surrounding 

the particle (m) 
t = void fraction of a region in the bed 
ti = dynamic viscosity (kg/ms) 
v = kinematic viscosity (m2/s) 
a = standard deviation of measured concen

trations 
X = fraction of active particles in the bed 

Superscr ip t s 

— = average value throughout the bed 

Subscr ipts 

j = j'th region of the packed bed (=1,2) 
1,2 = regions 1 and 2 of the packed bed 

model 
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4d„ 
E 

OjCtj RePij exp(7j) 

Repy-i dpjHctj + l ) 2 - (a; - l ) 2 exp(- f t ) ] 

with 

V 1 + 24x(l-

_ UjL 

^) 

yj = 
UjL 

2ejDeJ 
(1 - aj) 

(7a) 

(76) 

(7c) 

(7d) 

Fluid velocities through the two different regions are determined by 
assuming an equal pressure drop for each region for a fixed total flow 
rate. Ergun's relationship [21] was used for the pressure drop. 

The effective diffusion coefficients, Dej, were found from use of 
de Ligny's [22] correlation for the Peclet number for axial mass dif
fusion for spherical particles (tortuosity was taken as 1/0.7). The ef
fective thermal diffusivity was taken from Votruba, et al. [23] (with 
their recommended stagnant thermal conductivity and the coefficient 
Cs = 5.1). The particle Sherwood and Nusselt numbers were taken 
from the Ranz-Marshall correlation [7]. Possibly a more realistic case 
would be to require that the inlet concentration to the two regions be 
the same, i.e., Ci(0) = C2(0). For the range of values of the parameters 
used, it was found that the inclusion of this condition has an incon
sequential effect on the Sherwood numbers. 

In the next section effective Sherwood numbers will be predicted 
for beds with typical dimensions. The choice of the values for the 
parameters was solely based on the criterion that the parameters have 
reasonable values, typical of those used in experiments reported in 
the literature or used in practice, particularly those of fixed beds with 
gas flowing through them. 

Results 
The influence of channeling and backmixing was determined for 

each case considered by solution of equation (7). Values of She de
fined by equation (5) will be presented as a function of the average 
Reynolds number Rep = (u dp/v), average void fraction 6, average 
particle diameter dp and the Schmidt number Sc. 

Sh£ 
RepSc 

' 6(1 - e)X L 
•£n- (8) 

where A/Acs = 6(1 - e)x L/dp and the inlet concentration C; is as
sumed negligible. 

1 Axial Diffusion. To distinguish the effect of diffusion in the 
direction of flow from others we will first assume the entire bed has 
a uniform voidage, €i = £2 in equation (7). 

Figure 3 compares the value of She and Shp with axial diffusion 
present. Note that as the Reynolds number decreases, the influence 
of axial diffusion increases and the effective value of the Sherwood 
number decreases rapidly. Care must be exercised in using the Peclet 
number correlation appropriate to the case at hand. Note that the bed 
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Fig. 3 Effective Sherwood number. Effect of axial diffusion. Bed conditions: 
a-, = 0.95, a2 = 0.05, L = Sd„, e = 0.4, Sc = 2.5, x = 10 
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Fig. 4 Effective Sherwood number. Effect of channeling due to voidage 
variations across the bed cross section. Bed conditions, L = 5dp, Sc = 2.5, 
X = 1.0 

used in this example is only five particles deep, thus the use of a 
continuum representation of the phenomena, implied by equation 
(6), is approximate at best. However, this approximation should give 
the correct order of magnitude of the various processes, adequate for 
the present work. 

2 Channeling—Voidage Variation. In actuality, the voidage 
near the wall of a bed is higher than in the rest of the bed. Initial re
sults were obtained omitting axial diffusion to more clearly illustrate 
the influence of channeling. For these cases, equation (6) can be 
simplified by setting De to zero. The solution for each area of uniform 
voidage becomes equation (5), with She replaced by Shp and using 
the properties of each area. Fig. 4 shows the results for the effective 
Sherwood number of the bed given by equation (8), where the exit 
concentration is the mass averaged concentration over the exit area 
of the bed. The average Reynolds number is used. As the area of high 
voidage decreases, the effective Sherwood number decreases. Since 
the results shown in Fig. 4 were derived using velocity ratios based 
on negligible wall friction and lateral mixing, these results represent 
the extreme lower limit for the effective Sherwood number due to 
voidage variations. In general, voidage variations will cause Shg to 
differ from Shp by one order of magnitude or less. 

3 Channeling—Particle Size Variation. Since diameter 
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Fig. 5 Effective Sherwood number. Comparison of experimental results with 
analytical values including axial diffusion and channeling due to voidage 
variations. Effect of bias in ShE if experimental measurements of C„ greater 
than C„ are omitted. Analytical results when the standard deviation of mea
surements Is two percent and zero. Experimental results from: B-[28], ff-[29], 
W-[30], HT-[B] 

variations yield far less channeling than voidage variations, the former 
will have much smaller influence on Sh^. For a diameter ratio of two, 
She falls to approximately 0.5 at low Reynolds numbers. Thus, 
channeling due to voidage variation should have a stronger influence 
than channeling due to particle size variation. 

4 Combined Effects. The effective Sherwood number con
sidering both axial diffusion and channeling due to voidage variations 
is shown in Fig. 5. The results are very close to those due to axial dif
fusion alone. At low Reynolds numbers, axial diffusion begins to 
dominate over convective effects and the influence of velocity varia
tions across the bed cross section are diminished. Also shown in Fig. 
5 are experimental values reported by various investigators. Although 
the theoretical results agree with some of the measured values for the 
effective Sherwood number, other investigators report still lower 
values of She. 

5 Experimental Error. Figure 5 includes results for She when 
the possibility of experimental error is included. At low Reynolds 
numbers, the difference between the exit concentration of the fluid, 
Ce, and the saturation concentration of the fluid at the particle surface 
Cs becomes very small, approaching in magnitude the standard de
viation of the experimental measurement, a. Because of the com
plexity of experimental preparation many of the results were taken 
on experiments using a modest number of samples. As the difference 
between Ce and Cs approaches a, some measurements of Ce will ex
ceed C„. Investigators would have been tempted to exclude these 
experimental results as erroneous. This would distort the random 
distribution and bias the mean of the measured exit concentration. 
The error between the biased mean exit concentration and the actual 
exit concentration would be, 

. - Ce = • 

-

erfc 

1 [1 - CJCS 

2 \ or 

[ l-CJCs 

A / 2 0 -

)21 II 
(9) 

Figure 5 shows the error due to biasing the mean exit concentra
tion. 

For liquids in packed beds where the Schmidt number is much 
higher, the deviation between Shg and Shp due to axial diffusion and 
channeling appear at much lower Re p [24, 25]. This is seen in Fig. 6. 

Average Particle Reynolds Number ( — - £ ) 

Fig. 6 Effective Sherwood number for gas and liquid systems including axial 
diffusion and channeling due to voidage variations. Bed conditions, » i = 0.95, 
a2 = 0.05, L = Sd„, e, = 0.4, e2 = 0.7, x = 1 

Ranz-Harshal 1 
Pr « 0.7 

Experimental Results, and 
Proposed Correlations of 
Experimental Data 

Data taken fro® Ref. [4] 

10'" 10 1 10 

AVERAGE PARTICLE REYNOLDS NUMBER 

icr io' 

&) 
Fig. 7 Effective Nusselt number for gases and liquids In packed beds In
cluding axial conduction and channeling due to voidage variations. Bed con
ditions, 3 i = 0.95, a2 = 0.05, €, = 0.4, it = 0.7, t = 5dp and 10 dp, Pr = 0.7, 
kjk, = 1000, dp = 1 mm 

All bed parameters are as usual except that the Schmidt number is 
increased to 1000. 

In heat transfer experiments an additional phenomenon is the 
particle-to-particle conduction. Figure 7 shows the predicted values 
of the Nusselt number when axial conduction and channeling are 
present in comparison with experimental results. Because of the large 
effective conductivity the effective Nusselt number has a larger de
crease at small Reynolds numbers than does the effective Sherwood 
number. 

In fluidized beds axial diffusion and channeling effects will also be 
present. Near the minimum fluidizing velocity, the entire fluidized 
bed acts like a packed bed with a somewhat larger voidage. If the 
two-phase hypothesis is accepted [4, 27], as the velocity is increased 
above minimum fluidization the dense phase remains at the minimum 
fluidization voidage. The axial diffusion in the dense phase should 
be identical to diffusion in a packed bed. The bubbles in a fluidized 
bed lead to a large amount of gas bypassing which causes channeling 
errors much more severe than those found in a packed bed. Thus, the 
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difference between Shg and Shp in a fluidized bed should be equal 
to, or greater than, the difference found in a packed bed. This has been 
borne out by experimental results as shown in Fig. 8 taken from 
[2]. 

P e n e t r a t i o n T h e o r y R e s u l t s 
Nelson and Galloway attempt to explain the decrease in She at low 

Reynolds number as due to the decrease in Shp as Rep is decreased. 
They apply the penetration theory to a particle surrounded by a 
spherical shell of fluid of radius (dp /2 + &). Besides the typical pen
etration theory boundary conditions (constant surface concentration, 
Cs, constant initial fluid concentration Co), the authors assume that 
the outer boundary of the fluid shell is impermeable. They define the 
particle Sherwood number as 

centration and the time averaged concentration at the outer shell of 
the fluid over the same time T. 

ShD = -
Nd0 

(10) 
D(Cs-Co) 

where N is the mass transfer rate per unit area of particle surface 
averaged over the period T that the fluid surface is renewed. In the 
paper, T is taken to be inversely proportional to Rep. At low values 
of the Reynolds number, T increases, the fluid in the shell approaches 
saturation, and the mass transfer rate becomes small. The driving 
force in equation (10) is based on the initial concentration difference 
and it is invariant with time. Thus for low Reynolds numbers the 
Sherwood number based on equation (10) always goes to zero. 

We have resolved the identical problem with a Sherwood number 
defined using the time averaged mass transfer rate and a time aver
aged driving potential, i.e., the difference between the surface con-

Sh E 

Fig. 8 Fluid-solid mass transfer in fixed and fluidized beds, from [2] 
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Fig. 9 Results from penetration theory where the particle Sherwood number 
is defined by time-averaged concentrations 

NdD 

D •C\=Z+8,t 

(11) 

The solution is given in reference [27]. The results are shown on Pig. 
9 for different values of the bed voidage. At low Reynolds numbers 
the Sherwood number, defined by equation (11), approaches a con
stant, finite value. The limiting value of Shp increases with decreasing 
voidage in agreement with experiments and contrary to the original 
results of Nelson and Galloway. 

C o n c l u s i o n 

At low Reynolds numbers the particle Nusselt and Sherwood 
numbers based on local temperature or concentration differences 
approach a value equal to or greater than unity. Results from pene
tration theory do not contradict these conclusions when the Sherwood 
number is properly defined. 

When the overall heat or mass transfer performance of a fixed or 
fluidized bed is to be determined at low Reynolds numbers, a careful 
consideration of channeling and axial diffusion must be included. The 
overall or effective Sherwood and Nusselt number for the bed will be 
well below the values for individual particles. The decrease is pri
marily due to diffusion in the flow direction. Since the particles in
crease the overall thermal conductivity of beds with gas flows, the 
effective Nusselt number will be reduced more than the effective 
Sherwood number at low Reynolds numbers. 

Channeling due to variations in voidage or particle size has a more 
modest influence on the effective Sherwood and Nusselt numbers of 
fixed beds. In shallow fluidized beds or spouting beds where appre
ciable gas bypassing of the dense phase can occur, channeling may be 
more important. 

Error in the reduction of experimental data which introduces bias 
may be responsible for part of the observed decrease in the effective 
Sherwood and Nusselt numbers. 
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Heat Conduction in Unsteady, 
Periodic, and Steady States in 
Laminated Composites1 

This paper provides analytical solutions for heat conduction in composites of infinite, 
semi-infinite, and finite laminates in unsteady, periodic, and steady states. For compact
ness and generality, Green's functions are used. The method of analysis applies for com
posites of any number of layers, but only solutions for two material composites are pre
sented in this paper. Some calculated results of an example in steady and periodic states 
are shown and discussed. 

1 I n t r o d u c t i o n 
The analytical study on multidimensional heat conduction in 

composite regions has been of great interest in recent years due to the 
increasing usage of laminated and fiber reinforced materials. Most 
analyses reported in literature were made for two-dimensional heat 
flow in binary composites according to an approximate mathematical 
model [1-5]. By integrating the two differential equations with respect 
to the spatial variable normal to the laminates, they were reduced to 
two one-dimensional differential equations coupled by an "interaction 
term." Explicit expressions of "mixture" conductivity and specific 
heat were obtained. Using the mixture properties, the heterogeneous 
problem was reduced to one of a homogeneous material. This ap
proach is usually called mixture, or continuum, or continuum-mix
ture theory. 

Horvay and his associates [6-7] investigated the periodic solution 
of two-dimensional heat conduction in semi-infinite composites of 
two and three layers, with insulated broad-faces of the composite and 
temperature prescribed at the end asaharmonic function of time. To 
obtain an exact solution, they treated the problem as one of eigen-
functions with complex eigenvalues. Many interesting techniques 
were employed for the evaluation of the complex eigenvalues. Since 
the calculation of complex eigenvalues is usually quite complicated, 
the calculation of the temperature distribution in each laminate will 
require considerable efforts. Nevertheless, the complex eigenvalue 
approach does provide many interesting results, such as the steep 
changes of temperature in the proximity of the interface at high-
frequency excitation and phase lag of temperature waves. Based 
upon their investigations, Horvay, et al. made a thorough discussion 
on the range of validity of the continuum-mixture theory [7]. 

This paper presents exact solutions in unsteady, periodic, and 
steady states for three and two-dimensional heat conduction in 
composites of infinite, semi-infinite, and finite laminates with or 
without contact resistance at interfaces. Concentrated or distributed, 
instantaneous or continuous, heat sources or sinks are considered in 
each laminate. Boundary conditions on the two broad faces of the 
composite can be of the first, the second or the third kind, or the 
combination of them. Boundary conditions on other surfaces, if any, 
are either of the first or the second kind or their combinations. The 
material of each laminate is isotropic and homogeneous with constant 
thermo-physical properties. 

The purpose of this paper is to show that most composite-region 
problems can be solved exactly without the use of special mathe
matical techniques. Only two-layered composites are considered in 
this paper, though the method applies to any number of layers. 

1 This study was supported in part by the National Science Foundation ENG 
76-83367. 

Contributed by The Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by The Heat Transfer Division 
September 14,1979. 

However, for composites of a large number of layers, it is more con
venient to use fundamental Green's functions [8, 9]. 

2 F o r m u l a t i o n of P r o b l e m s and Green ' s F u n c t i o n s 
Consider first the heat conduction in unsteady state in a composite 

of two laminates: one in the region (x, —yi<y < 0, z) called region 
1 and the other in (x, 0 < y < y% z) called region 2. Quantities in the 
two regions are distinguished by subscripts 1 and 2. The differential 
equations to be solved are 

kiV^Ti - Pici ?p- = -Qi '"(x, y, z, t) + ktni^Ti 
ot 

(2.1) 

where i = 1,2; V2 is the Laplacian operator; and terms in the righthand 
side represent the rate of heat generation per unit volume, which is 
a linear function of temperature; subject to the initial and boundary 
conditions, 

Ti = Fi(x,y,z) t = 0 

dTi 
k1—-~h1T1=fi(x,z,t) y 

dy 

Z>T2 
k2—- + h2T2 = h(x, z, t) y 

dy 

and the matching conditions at the interface 

-y\ 

••y-i. 

, dTX dT 2 
#1 = k2 

dy dy 

<>To 
k2~=hc(T2-Ti) 

dy 

y = 0 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

For the infinite laminate, in order to obtain unique solutions for 
all cases in steady and unsteady states, we impose the condition 
that 

Ti = 0 (2.7) 

and for semi-infinite or finite laminate, boundary conditions at sur
faces other than y = — y i and y = y2 is to be of the first or second kind, 
i.e., either the temperature or the heat flux is prescribed; for instance, 
in the case of semi-infinite laminates, 

-hi 
dx 

dy,z,t) 

qi"(y,z,t) 

o 

o 

(2.8) 

(2.9) 

together with condition (2.7) for |z | -*• » , and x —>- «>. All prescribed 
functions are assumed to be bounded or absolutely integrable within 
each domain in question. 

If Qi '"> fi, Si and qt " involve periodical functions of time, for in-
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stance, 

<]i'" = <7o; ' " (* , y, z) cos (u)it - ei) 

Si = £o;(y, z)cos(u)2t ~ «2> 

(2.10) 

(2.11) 

the solution of the unsteady-state problem will, in general, consist of 
steady-state, periodic-state, transient and nontransient solutions. If 
we are only interested in the periodic solution, we just drop the initial 
condition (2.2) and all nonperiodical prescribed data. 

In steady state, we just drop the time-derivative term in (2.1), the 
initial condition (2.2) and the time-dependence of all the prescribed 
data. 

If the heat generation in the laminate involves concentrated heat 
sources, for instance, continuous point sources at (xu, yu, zu) and 
instantaneous point sources at (x2i, yu, z2i, t2), we just replace <j; ' " 
in (2.1) by 

qi ' " (* , y, z, t) + qiS(x - xu)8(y - yu)8(z - zu) 

+ Q28(x - x2i)8(y - y2i)h(z - z2i)8(t - t2) (2.12) 

We now wish to express the general solution for each state in terms 
of the Green's function which can be determined once and for all. The 
Green's function associated with the unsteady-state problem is to 
satisfy the differential equations 

ot 

= -ptaHx - x')b(y - y')d(z - z')5(t - t')dij (2.13) 

where the subscript j = 1, 2 and denotes the region where the pre
scribed data (i.e., sources) reside. The solution of (2.13) is subject to 
the initial, boundary, and matching conditions for the infinite lami
nate. 

Gu = 0 •• t ' 

dy 

k2 av 

k 

dG2j _ 
k2—— -

dy 

Gu-

- h1Glj 

+ h2G2] 

dy 

K(G2j 

0 I 

= 0 y 

= 0 y 

dG2j-
k2 —— 

dy 

-Gy) 

'\.\f\-* 

-yi 

••y2 

y = 0 

For the semi-infinite laminate, the boundary condition at x 
be satisfied is 

dG, 
Gu = 0 or 

dx 
0 x = 0 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

= 0 to 

(2.20) 

and for finite laminate, besides (2.20) additional boundary conditions 
are: 

; 0 or 
dGjj 

dx 

dG; 
M _ 

d2 
= 0 

••h 

•0,£3 (2.21) 

For periodic state, we drop 8(t — t') from (2.13) and initial condi
tions (2.14). In steady state, we replace pici in the righthand side of 
(2.13) with hi and drop the term pjC;dGy/d£ from (2.13) in addition 
to the modifications already made for periodic state. 

3 G r e e n ' s F u n c t i o n s a n d G e n e r a l S o l u t i o n s in 
U n s t e a d y S t a t e 

Consider first the case of the infinite laminate, (| x \ < <», - y 1 < y 
<y2, | z | < «°). Since \x\ < ° ° a n d | z | < °°,andGy = Ofor |* | , \z\ •— 
00, we may rewrite (2.13) in polar coordinates and seek the solution 
in the form [10] 

Gi, 
2TT „_i J o Nn 

(buy) y,-(&ny')Jo««)c-x-'t,-'')€d€ (3-D 

where Nn is the norm of eigenfunction Y; to be determined later; 
and 

R2 = (x - x')2 + (z - z')2 

kin2= — - ( P + f t 2 ) 

(3.2) 

(3.3) 

We recall that i = 1, 2 denotes regions for field points while j = 1, 2 
denotes regions for source points. We note also that (3.1) has already 
satisfied condition (2.19) and also (2.14-2.18) if Yi(^ny) satisfies the 
following set of equations. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(klYi'Y + (PiCiXn2 ~ ¥ ~ « 2 )Y; = 0 

V * Y - fiiYi = 0 y = - y i 

fe2'Y2' + h2Y2 = 0 y = y 2 

kiYi'-ksYj\ 
y = 0 

fe2Y2' = ^c(> '2-Y 1 ) ) 

Obviously (3.4-3.6) is of the Sturm-Liouville system possessing ei
genfunction solutions orthogonal with respect to the weight function 
PiCi while (3.7) and (3.8) behave as internal constraints. 

By the usual procedure of obtaining eigenfunctions, the solution 
of (3.4) for Yi and Y2 satisfying (3.5-3.7) is obtained as: 

. s i n g l y fei'gin + hi tan ^ l n y t 
Yi = 

ki£in kx£in(kYhnta.y\t,inyi-hi) 

k2'%2n + h2 tan £,2ny2 v sin £2ny , 
r2 - —r~. r 

cos £ l ny (3.9) 

cos£2„y (3.10) 
k2bn k2£2n(k2'£2nta.n£2ny2-h2) 

Substituting (3.9) and (3.10) into (3.8), we obtain the eigenvalue 

equation 

h'hn + hj tan ginyj _ 1 

~iki£in(ki'£in tan £;„y; - hi) hc 

2 
(3.11) 

.Nomenc la ture* . 

A = amplitude, defined in (6.6) and (6.7) 
c = heat capacity 
/ = defined in (2.3) and (2.4) 
F = defined in (2.2) 
h = heat transfer coefficient 
hc - thermal contact conductance, defined 

in (2.6) 
g = defined in (2.8) 
Im = imaginary part 
Jo = Bessel function of the first kind of order 

zero 
k, k' = thermal conductivity 
q" = heat flux 
q'" - rate of heat generation per unit 

volume 
q 1 = rate of heat generation 
Q2 = amount of heat generated instanta

neously 
R = defined in (3.2) 
Re = real part 
t = time 
T = temperature 
T = temperature 
x, y, z = rectangular coordinates 
x,y = x /y i ,y /y i 
y i . y2 = thickness for regions 1 and 2, re

spectively 

y2 = y2/yi 
Y' = differentiation of Y with respect to y 
a = thermal diffusivity 
8 = Dirac delta function 
dij = Kronecker delta function (1 for i = j , 0 

for i ^ j) 
e = phase lag 
p. = constant, defined in (2.1) 

k = f/yi 
p = density 
a = k2lki 
<i) = angular frequency 
0)1,0)2 = ooyi2/ai, ooyi2/a2 
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0.0 
1.0 2.0 0.0 1.0 

Y 

Fig. 1(a) Temperature distribution in steady state, a = 0.1114 

o.o 
-1.0 2.0 0.0 1.0 

y 

Fig. 1(6) Temperature distribution in steady state, a = 8.9774 

It can be easily shown, if we take the norm as 

XO nyi 

p1ciY1
2dy + I p?,ciY£dy 

•yi J o PiCi 1 2 

! 2 & *,•*&,* 

+ 

(*i'afc»8+ *».-%<+ fci'fr 
(ki'hn sin %inyi - hi cos £;„y;)2 

™i s i i COS sinyi + hi sin g,ny; 
(3.12) 

£in(ki'£in sin &ny; - >»i cos i^y;), 

then the eigenfunctions are orthonormal [9]. 
For the semi-infinite laminate (x > 0, — y i < y < y 2, | z | < °°) with 

boundary condition at x = 0 of the first or the second kind, we apply 
the simple reflection of image to obtain 

2 T „ - I J O JV„ 

X \JoW) =F J o t ^ i J l e - ^ 1 1 ' - ' ' ) ^ ? (3.13) 

where the — and + signs are for boundary conditions of the first and 
second kinds, respectively; R has been defined in (3.2) and 

fii2 = (* + x ' ) 2 + (z - z ' )2 (3.14) 

For the finite laminate (0 < x < £\, - y i < y < y& 0 < z < ^3) with 
boundary conditions at x = 0, £\ and 2 = 0, ^3 all of the first kind, or 
all of the second kind, or the combination of the first and second, we 
can obtain G;y by the fully eigenfunction expansion; for instance, if 
they are all of the first kind, we have 

Gij = r ^ £ £ t TT ViUta-wO') tyWv') 
l l ' 3 u = l n = l p = l i V n 

m-KX . mwx' . pirz . pirz' „. 
sin sin sin sin e-*-mnp \t t> (3.15) 

£1 £1 £z £3 

Ti= f " f " f F-i(x',y',z')Gil(x,y,z,t\x',y',z',Q)dy' 

•F2(x', y', z')Gi2(x, y, z, t\x', y', z', 0)dy' dx'dz' 

+ C* C~ C~ J _ f ° qi '"(x',y',z',t') 

l r*yi 
XGii(x,y,z,t\x',y',z',t')dy' + q2 '"(x'.y', 2', £') 

O0C2 J O 

XG;2(*,y, z, t | x ' , y ' , z ' , t ' )dy' dx'dz'dt' 

r r r 
Uo J - » Jo 

r 1 / ! ^ ' , z', t') - ^ - G ; i(*, y, 2,11*', - yi, z', t') 
M dy 

- r ^ M * ' , z', tO ^ - Gi2(x, y, z, t \x', y% z', t ') 
/»2 dy 

dx'dz'dt' 

+ C f°° an f g i (y ' , z ' , t ' ) — G a U . y . z . t l O . y ' . z ' . t O d y ' 
J o J-=> J - y i dx 

d z W (3.17) 

where 

X 2 mir\2 _ lpjr\2 

ill Us) ' 
(3 .16) 

•• <=° in (3.11) 

+ 0:2 P ga ty ' . z ' . t ' )—;Gi 2 (x ,y ,z , t | 0 ,y ' , z ' , t ' )dy ' 
J o dx 

If there are concentrated heat sources in the laminate, such as (2.12), 
we just replace q,-'" in (3.17) as given by (2.12). 

4 Green's F u n c t i o n s and G e n e r a l S o l u t i o n s in 
P e r i o d i c a n d S t e a d y S t a t e 

Consider first the case of the infinite laminate with heat generation 
involving periodic functions as typified in (2.10). To obtain the peri
odical solutions which are convenient in computation, we had better 
use periodic Green's functions. Let cop, where p = 1,2, 3 , . . . , denote 
the frequency of p harmonics and Gy)P the Green's function associated 
with o)p. We seek the solution of (2.13) for the present case in the 
form 

If the two layers are perfectly contacted, we just set hc 

to evaluate the eigenvalues X„. 
With Green's functions known, the solutions of the above problems 

can be readily written down by Green's formula. For instance, in the 
case of the semi-infinite laminate with temperature prescribed at x 
= 0, we obtain 

Gi, 
1 

: - — 1 
2w 

\{wpt—tp) J o " Yy(y|y'; fc„)«WR)&J€ W-D 

where R was defined in (3.2) and Y;; satisfies, 

Yu" - bP
2Yij = - « (y - y')«o- - y i < y < y2 (4.2) 

WYu' - hiYu = 0 y = - y i (4.3) 
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ki'Yzj' + h2Yij = 0 y = y2 (4.4) The steady-state solution can also be readily written down by using 

k Y •' = k Y '\ (4 5) t H e G r e e n ' s f o r m u l a - F o r instance, if the heat generation and boundary 
1 U 2 2' I y = o condition are (4.17) and (4.18) with cos (wtf - ex) and sin (w2t - e2) 

kzY'ij = K (Yy - Yij) J (4.6) deleted, then we replace GijiP(x, y, z \x', y', z'\ u>pt) in (4.19) by Gij(x, 
y, z | x', y', z') to give the steady-state solutions T\ and T2. Note that 

hp2 = Z2 + ftt2 + V 7 1 ! — (4.7) for steady state the imaginary part notation Im drops and Re is no 
ai longer needed. 

The solution of (4.2) satisfying (4.3-4.6) can be found by the usual 
way. For y < y' we obtain 

_ (A2 cosh £lpy + Ai sinh ZiPy)[kiZip(k2bP&3 + heA4) cosh ZiPy' - Kkfap&z sinh £ipy'\ 
Vn= £iPA ( 4 - 8 ) 

[fcz&pffci&pAi + ftcA2) cosh £2py + heki£lpAi sinhj2py](A4 cosh £2 py' - A3 sinh hPy') 
122 7 7 (4.9) 

ZlpA 
hck2(A2 cosh £ i py + Ai sinh £ipy)(A4 cosh %2py' ~ A3 sinh £2py') ,. , . . 

i i 2 - : 14.1U) 

A 
>icAi(A4 cosh £2py - A3 s inhJ 2 p y)(A 2 cosh £lpy' + At sinh £lpy') 

y2 1 . (4 . l l ; 

A 

where 5 Green's F u n c t i o n s for T w o - D i m e n s i o n a l U n s t e a d y , 
P e r i o d i c and S t e a d y S t a t e s 

Ai = ki' Zip sinh ZiPyi + hx cosh £lpyi I f a ] 1 t h e p r e s c r i b e d d a t a a r e independent of z, then the problems 

A2 = «i £iP cosh £ipyi + hi sinh £ipyi that have been considered in preceding sections become two-di-
A _ j , it :„u t .. A. u „„„v, f- ,. mensional. The two-dimensional Green's functions can be obtained 
A3 = «2 t2P sinh | 2 p y2 + n2 cosh £2py2 , . . 

_ 1. • 1. <• ^ n \ by the same methods as those shown m sections 3 and 4, or by mte-
A4 - fe2 ?2P cosh £2py2 + /i2 sinh ^ 2 (4.12) g r a t j n g ^ t h r e e . d i m e n s i o n a l G r e e n > s f u n c t i 0 ns with respect to z over 

A = M i ? i P A i A 4 + k2hP A3(ftifipAi + /ic A2) (4.13) (-°°> " ) : for unsteady state, 

For y > y', we just interchange y and y ' in (4.8-4.9). 
For the semi-infinite laminate, we obtain 

Gij = - L f " ~ YiUw)y>(feny') cos Z (x - x')e-*«2«-<'>d£ 
7T„ = 1 J'O iV„ 

1*1 <•» (5.1) 
Gij.p = ̂ ~ eV=~Uu>Pt-lp) C" Yij(y\y'; Zip) 

2lr J° 2 - /•- 1 
X [«7o(&R) T J0(£fli)]£d£ (4.14) G i ; = - E —yi«my)Y;(feny ' ) sin ^x sin ^x'e x«2(( J')d^ 

IT n — \*/0 ivn 

where fli was defined in (3.14); the minus and plus signs are for the x > 0 (5.2) 
boundary conditions at x = 0 of the first and second kinds, respec
tively. For the rectangular composite with boundary conditions of the _2_ " ™ _1_ ,,. \y it '\ 
first kind at each end of the composite, we obtain hii = gx m % n t \ Nn * ; y 

rrnvx . rmrx G«•,P = T 7 « V r I ( " p H i ' ' , £ £ Yi ;-(y|y';ftmnp) X s i n - — sin-—- e -*» 2<'- ' '> :0 < x < £x (5.3) 
£1*3 m=l n=\ «1 «1 

X sin sin sin sin (4.15) w n e r e m7rx TOTTX mrz . nirz 
sin sin 

«i £1 £3 £s 
where a; a; \ •? 1 / 

W2=^2
 + W

2
 + (^)2

+g)2
 + ̂ 5 (4.16) andforperiod ic state, 

For steady state, the Green's functions Gy(x, y, z\x', y', z 'Kor in- ^ =— e^/=T(wpt-ip) C" y . ( v | v ' - t. ) 
finite, semi-infinite and finite laminates can be obtained in the forms ' 'p it Jo y ' 'p 

as (4.1, 4.14) and (4.15) by setting cop = £ p = 0 . X cos ?(x - x')df | x | < « (5.5) 
With the periodic Green's functions known, the periodic solution 

for a specific problem can be again readily obtained by Green's for- „ _ 2i e^Hwpt-ip) ("" Y-ivW-i- ) 
mula. For instance, in the case of the semi-infinite composite with the '1,p ir J o y ' 'P 

prescribed data X sin ?x sin ^x'cij x > 0 (5.6) 

q i ' " = 9 o i ' " ( * . y . z ) c o s ( ( 0 i t - e i ) 2 
- y i < y < 0 0 < x < » H < - (4.17) G".p = - ev^r«»P«-«p) E yj/(y|y'; 6 

m = l 
imp/ 

g2 = g02(y , Z ) s in („ 2 t - £ 2) 0 < y < y 2 x = 0 | 2 | < - (4.18) X s i n!^H s i n^[^ 0 < X < A (5.7) 

the periodic solutions in regions i = 1,2 are x x 

^ r ° r° f" goi'"(*',/,«') 
where 

XB*[Gn,i(x,y,z\x',y',z';-wlt)]dx'dy'dz' ^ ** + ** + ^~~l «."' 

I 5o2(y', z')Im —-G i2,2(x, y, z |0, y', z'\ w2t) dy'dz' Zimp2 = \—\ + w 2 + V - l 
-» J o Idx' J \£il 

(4.19) All the functions Y's are those found in the last two sections. For 

- ^ (5-8) 
a; 

Journal of Heat Transfer NOVEMBER 1980, VOL. 102 / 745 

Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



X = 0.01 

Fig. 2(a) Amplitudes of temperature in periodic state.oh = 1.0,o>2 = 0.1043, Fig. 2(6) Phase lags of temperature in periodic state,c^ = 1.0,o>2 = 0.1043, 
0- = 8.9774 a = 8.9774 

1-8|-S = 

X =0.01 

0.0 

Fig. 3(a) Amplitudes of temperature in periodic state,ah = 10.0,O)2 = 1043, Fig. 3(6) Phase lags of temperature In periodic s ta te ,^ = 10.0,<o2 = 1.043, 
<r = 8.9774 0" = 8.9774 

and matching conditions 

steady state, we just delete the subscript p of GyiP and exp [-\/--l(o>pt 
- tp)] from (5.5-5.7). 

6 Calculated Example for Steady and Periodic States 
Consider a composite of two semi-infinite layers without contact 

resistance, without heat generation in the media and with the fol
lowing boundary conditions 

Ti = T2 = To cos cot x = 0 

T 1 = T2 = 0 „ — ( 6 i ) 

Ti = 0 y = - y i 

Ti = 0 y = y2 

T1 = T2 

fei—- = 
dT2 • y = o (6.2) 

Clearly, this is a two-dimensional problem. Since steady and periodic 
solutions of composite-region problems usually are of more interest 
than transient solutions [6-7], we present here some calculated results 
of the periodic solution while the steady-state solution is only a special 
case for a> = 0. Setting hi, h2 and hc = <» in (4.8-4.11), substituting the 
resulted Ytj (for the present case, p = 1 and is deleted) into (5.6) and 
applying G;y to (4.19) we obtain 
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Ti 2 
— = — Re 
T o 7T 

t\/—lwt I sin £x 
1_ 

_ ill ainh l^yg cosh | ]y + o-|2co8h|2y2[8inh|i(l + y ) - sinh^Lvlj/l!2 - o-(cosh£2y2- 1) sinh£,(y + 1)/ |9 Ifdf 

(|i sinh f ̂  cosh | i + of 2 cosh |2y2 sinh | i ) 
(6.3) 

To TT" 
Re , *J—iut J sin |x 

o 

•111 cosh^[sinhlay + sinh|2(y2 - y ) ] + <T|2 sinh | i cosh | 2 y j / | 2
2 - (cosh | i - 1) sinh | 2 (y 2 - y ) / | i | d | 

(|i sinh |2y2 cosh | i + CT|2 cosh |2y2 sinh | x ) 

(6.4) 

where all the quantities have been nondimensionalized, and 

| x
2 = | 2 + V = T wi; | 2

2 = | 2 + V = T co2 (6.5) 

If we setaJi =aj2 = 0, (6.3) and (6.4) yield the temperature distribu
tions in steady state. In the study of periodic solution, the most im
portant quantities are the amplitude and phase lag of temperature 
waves. Therefore (6.3) and (6.4) can be rewritten in the form 

1±. 
To' 

Al COS ((l)t — £l) 

— = A2 cos (wt — €2) 
To 

(6.6) 

(6.7) 

Some calculated results from (6.3) and (6.4) arranged in forms of 
(6.6) and (6.7) for a composite of copper and steel laminates are shown 
in Figs. l(a)-4(b). Figures 1(a) and 1(b) show the temperature dis
tributions in steady state for y 2 = 2yi, a = 0.1114 (region 1 is copper 
and region 2 steel) and a = 8.9774 (region 1 is steel and region 2 cop
per) . When the thickness of copper is two times that of steel, the edge 
of a temperature plateau occurs at the interface, resulting in a little 
heat flow from copper to steel. On the other hand, when the steel is 
twice the thickness of copper, heat flows from steel to copper at a 
significant rate. Consequently, the former gives rise to higher tem
perature inside the composite and steeper temperature gradients at 
surfaces y = —yi and y = y2. For y ! = y2, i.e., equal thickness of 
laminates, (6.3) and (6.4) reduce to 

Tl. 
To' To IT Jo 

' sin \x cosh | y 

| cosh | 
d | (6.8) 

It follows that temperature profiles in the composite is symmetrical 
with respect to the interface and is independent of laminate mate
rials. 

Amplitudes and phase lags of temperature waves are shown in Figs. 
2(a)-4(b) for y i = y2, y 2 = 2yi, a = 8.9774 and various values of o>i 
ando>2. For cox = 1 andaT2 = 0.1043, amplitude profiles are almost the 
same as temperature distribution in steady state and phase lags are 
small, particularly in the laminate of copper, as displayed in Figs. 2(a) 
and 2(6). These results can be anticipated in view of (6.5), since the 
effect of co; is small in comparison with that of | which varies from 0 
to °°. In the case of o>i = 10 and5J2 = 1.043, the amplitude profiles in 
region 2 (copper) are similar to temperature profiles in steady state 
but not those in region 1 (steel), as is clearly seen in Fig. 3(a). There 
is an inflection point of each amplitude curve near the interface in 
region 1 (steel); i.e., the temperature increases at a fast rate as the 
interface is approached. Phase lags in Fig. 3(b) are much larger than 
those in Fig. 2(b). However, the ratio of phase lags, ei/e2> do not differ 
significantly from that in Figs. 2(b) and 3(b), becausecUi/a>2 remains 
unchanged. 

In Figs. 4(a) and 4(b) are illustrated the amplitude profiles and 
phase lags foraii = 1000 andaJ2 = 104.3. The striking nature of these 
curves is that a very steep gradient takes place in both sides of the 
interface (Fig. 4(a)). Both the amplitude and the phase lag for a given 
value of x are essentially constant in each laminate except near the 
surfaces of the composite and its interface. The increase of thickness 
of copper laminate extends the flat part of each curve. The amplitude 
and phase lag for a given value of x undergo practically no change of 
magnitude. 
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Fig. 4(a) Amplitudes of temperature in periodic state,a)-, = 1000.0,o>2
 : 

104.3, a = 8.9774. Solid lines are for y2 = 1.0 and dotted lines are for y2 = 
2.0, coincided with solid lines for y < 1.0. 
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Fig. 4(6) Phase lags of temperature In periodic state,<o, = 1000.0,o;2
 : 

104.3, a = 8.9774. Solid lines are for y2 = 1.0 and dotted lines are for y2 -
2.0, coincided with solid lines for y < 1.0. 
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From the calculated results on frequency response of temperature 
waves, we may divide the harmonic excitation at surface x = 0 into 
three classes: low frequency foraJmax < 1.0, moderate frequency for 
1 < a>max < 10, and high frequency for o)max > 10. In the case of low 
frequency withaJmax ^ 1-0, the temperature distribution in periodic 
state may be calculated with good approximation by 

T(periodic) = T(steady) cos wt (6.9) 

which may be called quasi-steady-state solution. 

7 Concluding Remarks 
As mentioned earlier, the continuum-mixture theory has been 

widely used in the analysis of multi-dimensional heat conduction in 
composite regions, because of its simplicity and the possibility of 
obtaining the mixture thermal conductivity and specific heat. It gives 
good results forw < 1. In this case, the quasi-steady-state solution (6.9) 
also serves well. ForoJ > 1, the phase lag in the steel laminate ia quite 
significant and therefore in the definition of mixture thermal prop
erties, frequency should be taken into account. The sudden change 
of temperature gradient at the interface cannot be found by the 
continuum-mixture theory forw > 1. 

An alternative form of (4.14) for GijiP can be found by using ei
genfunctions Yi(^i\py) which is given in the same form as (3.9) and 
(3.10), except that £;„ is replaced by £;\p defined by 

& V =• fx2 - « 2 - V=l ^ (7.D 

where we have used subscript A to emphasize that the eigenvalues are 
complex. By using eigenfunctions Y;(£;xP;y), the periodic Green's 
function and hence the temperature field will involve complex ei
genvalues. That was the approach followed in [6] where, however, the 
temperature distribution was not reported because of the difficulty 
in computation. 

Exact solutions obtained in this paper can be calculated without 
difficulty. For infinite and semi-infinite composites, the well known 
techniques in the numerical calculation of Fourier integral and Fourier 
transforms are to be employed [11,12]. Exact solutions for composites 
of cylindrical layers can be treated by the same way. 
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Turbulent Transfer of iomentu 
and- Heat in a Separated and 
Reattached Flow ower a Blunt Fiat 
Plate 
Turbulent shear stress and heat flux were measured with a hot-wire anemometer in the 
separated, reattached, and redeveloped regions of a two-dimensional incompressible air 
flow over a flat plate of finite thickness having blunt leading edge. The characteristic fea
tures of the turbulent heat flux are found to be nearly equal to those of the turbulent shear 
stress in the separated and reattached flow regions. However, in the turbulent boundary 
layer downstream from the reattachment point, the development of turbulent heat flux 
appears to be much quicker than that of turbulent shear stress. Eddy diffusivities of mo
mentum and heat are evaluated and then the turbulent Prandtl number is estimated in 
the thermal layer downstream of reattachment. These results are compared with the 
available previous data. 

Introduction 
Prediction of heat transfer in the separated, reattached, and 

redeveloped regions of incompressible or subsonic flow has been 
recognized to be very important in relation to various engineering 
aspects, and there have been many papers on a wide variety of flow 
configurations. Examples include downward or upward surface steps, 
abrupt circular channel expansions or contractions including an orifice 
induced separation, and roughness elements attached to a plane wall. 
They have been cited in a review paper by Fletcher, et al. [1] and also 
in papers by the present authors [2-4]. Furthermore, some studies 
were recently published by Sparrow, et al. [5, 6]. 

In spite of many works conducted for the heat or mass transfer 
behaviors in the separated, reattached, and redeveloped flow, there 
has been little information on the characteristics of the turbulent 
temperature fluctuation or the turbulent heat flux in such compli
cated flows. Accordingly, the detailed mechanism of heat transfer is 
considered to be still unclear. Recently Seki, et al. [7] measured the 
turbulent heat flux distributions in the separated, reattached, and 
redeveloped flow over a double backward facing step. In addition to 
the limited data on the turbulent heat flux noted above, there have 
been few studies of the eddy diffusivities of momentum and heat and 
the turbulent Prandtl number, which plays an important role in 
theoretical analyses of the heat transfer in the turbulent thermal layer 
[8,9]. 

The purpose of the present study is to measure the turbulent shear 
stress and heat flux distributions in the separated, reattached, and 
redeveloped regions of a two-dimensional incompressible air flow over 
a blunt flat plate. The differences in their characteristic features and 
their mutual correlations are discussed. Moreover, in the turbulent 
thermal boundary layer downstream of reattachment, the eddy dif
fusivities of momentum and heat are evaluated and the turbulent 
Prandtl number is estimated with them. The flow configuration in
vestigated is the same as that in previous works [2,10] and is sche
matically shown in Fig. 1 along with the coordinate system employed. 
The flow separates at the leading edge of the plate and then reattaches 
to the plate surface at about four plate thicknesses downstream from 
the leading edge in the Reynolds number range studied. Subsequently 
turbulent flow and thermal boundary layers develop in the streamwise 
direction. Heat transfer coefficient attains a maximum at the reat
tachment point and afterward decreases monotonically with the 
longitudinal distance. Heating of the plate begins at the corner, point 
0 in Fig. 1, so that the starting point of heating coincides with the 
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separation point. Kottke, et al. [11, 12] recently measured the mass 
transfer on a flow configuration similar to the present one. The ve
locity and mass density fields, however, were not investigated in their 
studies. 

Experimental Apparatus and Technique 
The experiments were conducted in a wind tunnel which was the 

same as that in the earlier heat transfer study [2]. Two test plates were 
examined. One of them, the same as that used in reference [2] (20 mm 
thick, 100 mm wide and 400 mm long), with which the greater part 
of the experimental data were obtained. This plate will hereafter be 
called Plate I. Some additional measurements were made with another 
plate (22 mm thick, 100 mm wide and 550 mm long). It was the same 
as that used in reference [4]; it shows the nose shape effects on heat 
transfer behavior in the separated, reattached, and redeveloped flow 
over blunt flat plates, and will be called Plate II. The leading edges 
of the plates are cut at an angle of 90 deg in order that the flow always 
separates there. Detailed descriptions of the plates and the wind 
tunnel are omitted here. Heating of the plate was made by conducting 
electric current to a stainless steel sheet of 0.05 mm thick stuck to both 
sides of the plate; and the experiments were conducted under the 
condition of constant heat flux. Time mean values of temperature and 
velocity were measured with a temperature probe of 0.07 mm cop-
per-constantan thermocouple and a constant temperature hot-wire 
anemometer along with a linearizing circuit, respectively. The single 
wire probe was made of tungsten wire of 0.005 mm dia and 1 mm long. 
It was calibrated in the upstream uniform flow and was mounted at 
90 deg to the flow direction in the plane parallel to the plate sur
face. 

In the measurements of the turbulent shear stress and heat flux, 
the anemometer was operated without the linearizer and the hot-wire 
was rotated in the x-y plane. The geometrical arrangement of hot-wire 

hot-wire 

flow direction 

_x. 

T . 

heated surface 

Fig. 1 Flow configuration and coordinate 
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Fig. 2 Turbulent shear stress distribution 
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is included in Fig. 1. The inclination angles to the mean streamline 
were selected to be 60 and 120 deg, except in the vicinity of the plate 
surface where the angles were changed because of obstruction from 
the supporting system of the hot-wire. The prong and support of the 
hot-wire were aligned in the x-y plane in order to reduce their dis
turbance to the flow. 

The analysis of the turbulent shear stress and heat flux from mean 
and rms fluctuating voltage readings of the anemometer was based 
on Kramers' formula [13] as follows: In a turbulent thermal boundary 
layer, the temperature fluctuation exists along with the velocity 
fluctuation. When measurements are conducted at two inclination 
angles of hot-wire to the flow direction <j> and ir-<t>, the following 
equation is easily derived from Kramers' formula. 

. -* 1 1 
Ae 2 = - f2 cot <p —- — / cot (p -

vt 
(1) 

4 ' ' C/2 2 ' U(Thw-T) 

where / = (1 - E0
2/E2), A i 2 = 6*/E% - (^/E2)^; E and e are 

mean and fluctuating voltages of the anemometer, respectively; and 
Eo denotes the value of E at zero velocity; and ThW is the hot-wire 
temperature. First, the turbulent shear stress is measured without 
heating the wall (in such a situation, the second term on the righthand 
side of equation (1) drops out). Secondly, the measurement is con
tinued under conditions created by heating the wall and keeping the 
hot-wire temperature equal to that in the first step. Then the turbu
lent heat flux can be estimated from equation (1) based on the as
sumption that the turbulent shear stress may not be affected by 
heating the wall. That is, they are determined from 

~~ ( A ^ ) c uv 
— = 4 tan ip -
U2 

vt 2 tanip 

U(Thw - T) fh 

fc2 

(A^)c - (AP), 

(2) 

(3) 

where the subscripts c and h correspond to nonheating and heating 
conditions, respectively. More descriptions of the present method may 
be found in another paper by the present authors [14]. In the mea
surements, two steps mentioned above were reversed, since about IV2 
hr were needed to reach a steady state in the second step, and, on the 
other hand, only about 20 min were required to attain steady state 
after termination of heating. Several methods can be considered to 
solve equation (1) for uv and vt. The present method may appear 
unusual. However, it is simple and requires only one channel of hot
wire anemometer though the time required is relatively long. 

0 0 0 

Fig. 3 Turbulent heat flux distribution 

0 0 0.004 
V»/Ua>(Tw-To>) 

In a previous heat transfer study [2], the Reynolds number formed 
with the upstream uniform flow velocity and half the plate thickness 
Re = U„H/v was varied from about 3000 to 18,000, and the heat 
transfer characteristics were found to be generally independent of the 
Reynolds number. Accordingly, the present experiments were con
ducted at a constant free stream velocity U„ = 18.8 m/s and the cor
responding Reynolds number, Re = 12000. The heat flux per unit area 
and unit time q was about 1.7 kW/m2 which was so low as to make 
effects of the temperature variation in the thermal layer upon the 
turbulent shear stress small. The measured range of streamwise dis
tance are from x/H = 12 to 36. Note that these experiments were made 
with Plate I. 

Some additional measurements were conducted with Plate II in 
order to extend the longitudinal distance so as to include the separated 
and reattached regions and also to confirm the repeatability and re
liability of the data. The experimental conditions were U„ = 18.0 m/s, 
Re= 13600 and q = 2.5 kW/m2. The cross sections tested are x/H -
4,10, 20, 30 and 40. The nose shapes of these two plates are, however, 
not exactly equal to each other and the heat transfer features are a 
little different in the immediate neighborhood of the leading edge. 
The reattachment length for Plate II is about 9H [4], which is larger 
than 8H [2] for Plate I. It results in a difference of the turbulent shear 
stress and heat flux distributions at the same streamwise location as 
found in the following results. In spite of such differences, general 
characteristics of the heat transfer and the turbulent shear stress and 
heat flux are in good agreement for the two plates. 

E x p e r i m e n t a l R e s u l t s and D i s c u s s i o n 
The present study directed its attention to the turbulent heat flux 

and shear stress in the turbulent thermal layer, which was found to 
be much thinner than the flow boundary layer in the reattached and 
redeveloped flow regions downstream of the reattachment point 
[2]. 

Figures 2 and 3 show the distributions of the turbulent shear stress 
and heat flux at several cross sections including the separated, reat
tached, and redeveloped flow regions. The results at x/H = 10, which 
is very close to the reattachment point, include the data obtained by 
repeating the measurements twice with Plate II. Those at x/H = 20 
and 30 are the data measured with both Plates I and II. 

The uncertainty of the present data depends, first of all, upon 
Kramers' formula on which the analysis of data is based. It was found 
in the preliminary experiments that its accuracy was very satisfactory 
in the present experimental range of velocity. 

- N o m e n c l a t u r e . 

2H = plate thickness 
Prt = turbulent Prandtl number 
q = heat flux per unit area and unit time 
Re = Reynolds number, U^H/v 
t = turbulent temperature fluctuation 
T = mean temperature 
Tw = wall temperature 
T„ = temperature at upstream uniform 

flow 
T , = friction temperature 

u, v ~ turbulent fluctuating velocities along 
and normal to mean streamline 

U = mean velocity 
Um = free stream velocity outside boundary 

layer 
[/•» = velocity at upstream uniform flow 
U, = friction velocity 
x = streamwise distance from leading edge 

along plate surface 

y = distance normal to plate 
5d = displacement thickness 
bm = momentum thickness 
bt = nominal thermal boundary layer thick

ness 
8T = thermal boundary layer thickness 
£h, tm = turbulent diffusivities of heat and 

momentum 
K = thermal diffusivity of air 
v = kinematic viscosity of air 
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The accuracy of nondimensional turbulent shear stress —uv/V„2 

determined from equation (2) is affected by the shift of mean voltage 
readings of the anemometer due to the variation of room temperature 
and due to the contamination of the hot-wire during the experiments, 
the precision of the linearizing circuit of the anemometer which was 
used for the measurements of mean velocity profile, and the exactness 
of the inclination angle of hot-wire to the mean flow direction. The 
uncertainty of —uv/U«,2 shown in Fig. 2 by considering these affecting 
factors is estimated to be about ±11 percent though the accuracy of 
Kramers' formula is not included. 

On the other hand, the uncertainty of the turbulent heat flux vt 
calculated from equation (3) may be affected by the exactness of the 
hot-wire temperature and also the shift of room temperature, in ad
dition to several factors described above in connection with that of 
turbulent shear stress. The uncertainty of vt/Ua(Tw — T„) , shown 
in Fig. 3, is estimated to be nearly ±18 percent by appraising minutely 
all the factors pointed out. However, as can be seen in equation (3), 
the turbulent heat flux is obtained by taking the difference between 
two readings of Ae2 which are nearly equal. Therefore, small reading 
errors may produce large errors in the value of ut. Finally the uncer
tainty of vt/V«,(Tw - T«.) may become larger than ±20 percent when 
the reading error is included. 

It is to be noticed here that equation (1) is derived from Kramers' 
formula under the assumption that the turbulent fluctuating velocity 
and temperature are very small compared with the corresponding 
mean values; that is, >/Ti?IU « 1, 4 ^ IV « 1, and V^KThu, - T) 
« 1. Only their first order terms are considered in the evolution form 
of Kramers' formula. Therefore, the effects of the nonlinear terms 
ignored in the present study become large near the wall where the local 
turbulence intensities are high and the uncertainties of the present 
results increase. In the experiments, however, the measurements were 
not conducted close to the wall because of the obstruction from the 
supporting system of the hot-wire. 

Especially in the neighborhood of the reattachment point, the local 
mean velocity is very low and the turbulent fluctuating velocity is high. 
It may result in the large nonlinear effects on the data. In addition 
to it, the unsteadiness of the flow and temperature fields therein is 
very severe and the reading error of the output voltage of the ane
mometer inevitably rises. Considering these factors in the reattached 
flow region, the uncertainty of —uv/V„ 2 may be higher than about 
±30 percent, and that of vt/Um(Tw — T„) may be of an order of ±50 
percent. The large scatter and uncertainty of the data, especially, of 
ut/V„(Tw — T„) are found in Fig. 3, as expected from the discussions 
noted above. Flow visualization studies conducted with a free surface 
water channel made clear the flow in the separated and reattached 
flow regions, though the Reynolds number was of an order of 2000. 
Several large vortices of complicated form are produced in the sepa
rated flow region, their breakdown occurs quite frequently, and the 
randomly fluctuating fluid violently washes out the wall near the 
reattachment point. 

The present results of the turbulent shear stress are generally in 
good agreement with the earlier data for the same flow configuration 
[15]. Nondimensional turbulent shear stress -uv/V„ 2 shows a peak 
value of about 0.04 on the separated shear layer at x/H = 4. It is in
teresting to notice that the positions of peak at x/H = 10 and 14, which 
are close to the reattachment point, are nearly equal to that at x/H 
= 4. It suggests that an inner part of the separated shear layer may 
approach the reattachment point as the time-averaged separated 
streamline. 

On the other hand, as far as the turbulent heat flux is concerned, 
its characteristic behavior appears to be similar to that of the turbu
lent shear stress in the separated and reattached flow regions, though 
there exists a large scatter therein as described above. Nondimen
sional turbulent heat flux vt/V„(Tm — T„) reaches its maximum 
value of an order of 0.006 in such flow regions. However in the tur
bulent boundary layer developing downstream from the reattachment 
point, its general feature seems to be quite different from that of the 
turbulent shear stress. The difference is easily understood from the 
results shown in Figs. 4 and 5, which represent streamwise variations 
of the turbulent shear stress and heat flux in the boundary layer 
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Fig. 4 Streamwise variation of turbulent shear stress in redeveloped flow 
region 
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Fig. 5 Streamwise variation of turbulent heat flux in redeveloped flow re
gion 

downstream from the reattachment point. &d and ST in the figures 
denote the displacement and thermal boundary layer thicknesses, 
respectively, defined as 

&d= j"° (1 - VIVm)dy (4) 

5r= §J (T - T„)I(TW - T„)dy (5) 

where Vm is the free stream velocity outside the boundary layer. 
Dotted lines in Fig. 4 exhibit average lines of the previous data of 
reference [15] for the same flow configuration as in the present study, 
since the present experiments are limited in the thermal layer. Some 
scatter found in the data at x/H - 20 and 30 in Fig. 4 may be due to 
the fact that the leading edges of Plates I and II are not exactly equal 
to each other. The reattachment length for Plate II is a little longer 
than for Plate I [4]. It causes higher values for the former than the 
latter as mentioned previously. 

To the far downstream cross section, the turbulent shear stress 
attains its maximum at a point away from the wall and then decreases 
as getting farther away from the wall. The streamwise distance ex
amined is not enough to reach a state where the turbulent shear stress 
decreases monotonically with the wall distance as found in the normal 
boundary layer without separation and reattachment over a plane wall 
[16]. The data at x/H = 30 and 40 are nearly equal to each other in the 
neighborhood of the wall but are quite different far from there. That 
is, the viscosity of fluid heavily affects the turbulent shear stress and 
promotes its diffusion in the vicinity of the wall. However, that effect 
decreases rapidly with the wall distance and the effects of the sepa
ration and reattachment upon the turbulent velocity fluctuation field 
remain far downstream in the outer layer. 
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On the other hand, the turbulent heat flux distribution shows no 
essential variation in shape at cross sections downstream from the 
reattachment point, as can be seen in Fig. 5, though somewhat large 
data scatter exists, especially at cross sections relatively close to the 
reattachment point. The turbulent heat flux decreases monotonically 
from the immediate neighborhood of the wall to the outer part of the 
thermal layer. An average line roughly estimated is included in Fig. 
5. In the downstream of reattachment, the turbulent velocity fluc
tuation is still violent and it may promote strongly the diffusion of 
heat. The result is that the temperature distribution needs only a 
distance of about six plate thicknesses from the leading edge to reach 
a similar state and, on the other hand, the velocity profile requires 
about 15 plate thicknesses to become nearly similar in shape [17]. It 
may be inferred from these descriptions that the development of the 
turbulent fluctuating temperature field is much quicker than that of 
the turbulent fluctuating velocity field. 

Described in Fig. 6 is the correlation between the turbulent heat 
flux and shear stress at several cross sections. Data scatter is not small. 
However, in general, the large value of —uv/U„2 accompanies the 
small value of vt/Ua(Tw — T„) and it results in negative slope of the 
correlation, though the outer part of the thermal layer may be ex
cluded where both of them are small. Such a feature of the correlation 
between — uv and vt may be peculiar to flows accompanying the 
separation and reattachment, in which the turbulent shear stress 
reaches its maximum far away from the wall as previously shown in 
Fig. 4. The present streamwise distance examined is not enough to 
attain a state where the turbulent heat flux increases with the tur
bulent shear stress, as can be detected in the results of Johnson [18] 
for a turbulent boundary layer without separation and reattachment 
over a flat plate. 

The eddy diffusivities of momentum and heat are very important 
in estimating degrees of the transfers of momentum and heat by the 
turbulent fluctuation, respectively. The turbulent Prandtl number 
is defined as their ratio and it plays an extremely important role in 
analyzing the turbulent heat transfer, since in many of the proposed 
turbulence models, its value is assumed to be constant or to be a 
known function of several factors [8,9,19]. They are defined respec
tively as follows. 

tm = -w/(dU/dy) (6) 

th = -VtKdTldy) (7) 

Prt = tjth (8) 

It may be difficult to estimate them with reasonable reliability under 
the data scatter of the turbulent heat flux as found in Figs. 3 and 5. 
However, they are very important in understanding the detailed heat 
transfer mechanism and also in analyzing theoretically the turbulent 
heat transfer as noted above. Moreover, there have been few studies 
of them, especially in complicated flows such as treated in the present 
study. The authors tried to estimate them in consideration of these 
situations. 

In the turbulent boundary layer developing downstream from the 
reattachment point, neither the velocity profile nor the temperature 
profile may be expressed by a simple power law. Therefore the only 
way to estimate gradients of velocity and temperature in equations 
(6) and (7) is graphical. It may produce a large uncertainty of velocity 
and temperature gradients. Furthermore data scatters of the turbu
lent shear stress and heat flux are not necessarily small as mentioned 
above. Consequently, relatively large data scatters are produced in 
tm, e/, and Prt as found in the following results. 

Representative examples of the turbulent diffusivity of heat are 
shown in Fig. 7 in nondimensional form of 6/,/K where K is the thermal 
diffusivity of air. Following statements can be extracted that in the 
neighborhood of the wall, th increases roughly linearly with the wall 
distance and its gradient decreases to the downstream, and that in 
the outer part of the thermal layer, th may be regarded to be about 
constant. This characteristic behavior of th resembles that of tm far 
downstream from the reattachment point, though the outer layer may 
be excluded where tm seems to decrease with the wall distance 
[15]. 
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Fig. 6 Correlation of turbulent heat flux and shear stress 
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Fig. 7 Distribution of eddy diffusivity of heat 

Shown in Fig. 8 is the correlation between th and tm. Included in 
the figure is a line of th = tm, that is, Prt = 1. As can be seen, the 
greater part of the data exists in the region of tm > th- It suggests that 
the turbulent Prandtl number may be larger than unity at most of the 
measured points. Note that some data points showing large divergence 
from others are excluded from Figs. 7 and 8 for clearness. 

There have been many prediction formulae of the turbulent Prandtl 
number in the turbulent thermal boundary layer. They are referred 
to in a review paper by Reynolds [19]. On the other hand, as pointed 
by Blom [20], the previous data of Prt are mostly evaluated by solving 
the boundary layer momentum and energy equations with the ex
perimental values of the wall shear stress, the wall heat flux, and the 
velocity and temperature profiles; for example, see a work by Simpson, 
et al. [21]. There have been few data of Prt determined directly from 
the measured values of the turbulent shear stress and heat flux in the 
thermal layer over the plane wall. 

Typical examples of the turbulent Prandtl number distribution 
in the thermal layer are exhibited in Fig. 9 along with previous data 
for the flow over a flat plate at zero pressure gradient [18,20,22,23]. 
These data, except Johnson's, were read from a paper by Antonia, et 
al. [22]. Experimental conditions of Johnson [18], Blom [20] and 
Antonia are nearly equal to each other; that is, the wall temperature 
or the wall heat flux are changed discontinuously at a position where 
the boundary layer is presumed to reach a fully developed state. Fu-
lachier's study appears to be done under a somewhat different sit
uation; that is, the thermal layer also reaches a fully developed state 
[22]. St in the figure is the nominal thermal boundary layer thickness 
defined as the distance from the wall to a point of (T — T„)/(TW -
T„) = 0.01. Scatter of the present data is not small but its degree is 
not much different from that of Johnson. Included in the figure is an 
average line of the present data at two cross sections x/H = 30 and 36 
for clearness. 

In general, the present value of Prt seems to be nearly equal to unity 
in the vicinity of the wall and to increase as the wall distance increases. 
Such behavior can be detected in Antonia's results but is somewhat 
different from those of Johnson and Blom. Fulachier's data exhibit 
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a trend rather similar to Antonia's. In the present study, the turbulent 
Prandtl numbers are estimated also at other cross sections. Their 
characteristic feature appears, in essence, not to be different from the 
data shown in Fig. 9. Some existing prediction formulae of Prt express 
it as a function of nondimensional eddy diffusivity of momentum 
tmlv. In the present study, the authors tried to describe Pr t as a 
function of em/e but successful results were not obtained. 

The present results of the turbulent heat flux distribution are 
compared with the data by Johnson [18] and Antonia, et al. [22] in 
Pigs. 10 and 11. In Johnson's study the wall temperature was changed 
discontinuously, and, on the other hand, the wall heat flux was 
changed in Antonia's work. All the results including the present ones 
show qualitatively the same trend; namely, the turbulent heat flux 
decreases monotonically as the distance from the wall increases. The 
present data are higher than those of Johnson as shown in Fig. 10 
where dm is the momentum thickness defined as 

.= C"(U/Um)(l 
Jo 

U/Un)dy (9) 

On the other hand, Antonia's results are higher than the present ones 
as shown in Pig. 11, in which U, and T, denote the friction velocity 
and temperature defined as, 

U. = \TrJp and T, = qlpCpUt (10) 

In equation (10), TW is the skin friction, p the density of air and Cp the 
specific heat at constant pressure. 5o in Antonia's data is the nominal 
boundary layer thickness at the upstream edge of heated section. 
Figures 10 and 11 show that the present turbulent heat flux at cross 
sections far downstream from reattachment is nearly equal to that 
in the turbulent boundary layer without separation and reattachment 
over the plane wall both in its shape and magnitude. It may be con
cluded that the violent mixing of the turbulent fluctuation down
stream of reattachment produces the rapid diffusion of heat and re

sults in the quick development of the turbulent fluctuating temper
ature field as compared with the turbulent fluctuating velocity field, 
as described previously. 

Blom made his measurements under conditions similar to John
son's. However, his data exhibit a peculiarity; that is, in the neigh
borhood of the wall, there exists a region where the turbulent heat flux 
varies little with the wall distance and its value is much larger than 
Johnson's (say about vt/U^iTu, - T„) = 0.0023). The present results 
of the turbulent heat flux are also compared with the data by Seki, 
et al. [7] for a double backward facing step which accompanies the 
separation and reattachment of flow. However, the former is quite 
a bit higher than the latter. That is, the present data in the form of 
ut/C/„ (Tw - T„) are of the order of 0.002 to 0.003 at x/H = 16 but 
those of Seki, et al. are at most 0.0005 at x/H = 15.3 where H is the 
step height. Their flow configuration is different from the present one. 
The difference of the reattachment lengths may cause such discrep
ancy but its detail is not clear to the present authors at present. 

C o n c l u d i n g R e m a r k s 
The turbulent heat flux along with the turbulent shear stress was 

measured in the separated, reattached, and redeveloped regions of 
a two-dimensional incompressible air flow over a blunt flat plate. It 
is found from the results that the characteristic features of the tur
bulent heat flux are nearly equal to those of the turbulent shear stress 
in the separated and reattached flow regions but are quite different 
in the redeveloped flow region. In the turbulent boundary layer de
veloping downstream from the reattachment point, the development 
of the turbulent heat flux appears to be much quicker than that of the 
turbulent shear stress. The profile of the former, in essence, becomes 
nearly similar at about 15 plate thicknesses downstream from the 
leading edge though the data scatter is not small. On the other hand, 
the present stream wise distance is not enough to attain a state where 
the turbulent shear stress profile becomes similar. 
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Eddy diffusivities of momentum and heat are estimated and then 

the turbulent Prandtl number is evaluated in the thermal layer 

downstream of reattachment. Eddy diffusivity of heat appears to 

increase about linearly with the distance from the plate surface in the 

neighborhood of the wall and to be regarded as nearly constant in the 

outer layer. At the greater part of the measured points, the eddy dif

fusivity of momentum seems to be larger than that of heat. In con

sequence, the turbulent Prandtl number, in general, is greater than 

unity. It is nearly equal to unity near the wall and then increases with 

the wall distance. Thus the behavior of the turbulent Prandtl number 

is similar to that of Antonia, et al. for the turbulent boundary layer 

over the flat plate at zero pressure gradient. 

The present turbulent heat flux distributions at the downstream 

cross sections far from the reattachment point are compared with the 

previous results for the turbulent thermal boundary layer over the 

flat plate. They show a very similar trend, that the turbulent heat flux 

decreases monotonically with the wall distance, though a quantitative 

difference of the data can be detected. It is found that there exists a 

large scatter of the turbulent heat flux in the reattached flow region. 

It may not be easy to obtain reliable data in such a complicated and 

randomly fluctuating flow region but the measuring method should 

be improved. 
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Source of Heat 

Measurements are presented of velocity and temperature fluctuation statistics in two-
dimensional boundary layers over nominally adiabatic, smooth, and rough surfaces far 
downstream of spanwise line sources of heat. All quantities are found to scale satisfactori
ly on uT, 8 and ATmax. The generation term in the transport equation for the mean-square 
temperature fluctuation reaches a maximum at a distance of about 0.75 above the surface 
and the turbulent Prandtl number is about 1.0 in the outer layer falling to zero near the 
surface. The outer part of the thermal layer behaves like a uniformly heated wall flow and 
the results are relevant to the central region of the plume from a point source of heat or 
pollutants, which will be approximately two-dimensional at large distances from the 
source. 

1 Introduction 
The general problem of turbulent transport of scalar quantities like 

heat or mass is of great importance in engineering or meteorological 
studies. In particular, studies of atmospheric pollution, where the 
source of heat or contaminant is inside the atmospheric boundary 
layer and comparatively close to the surface, require a more detailed 
description of the turbulent heat or pollutant fluxes. If the Reynolds 
analogy between heat and momentum was valid for any flow situation, 
one could expect that the predictions of such flows would be simple. 
In fact, this analogy is not always valid and the various prediction 
methods need accurate velocity-temperature (or concentration) 
correlation measurements. The analogy between heat and pollutant 
transfer in turbulent flow is virtually exact if density changes can be 
neglected; in general, it is much easier to measure temperature fluc
tuations than concentration fluctuations. 

The present experiment is an attempt to investigate the thermal 
boundary layer far downstream of a line source of heat over rough and 
smooth surfaces. A previous experiment similar to the present work 
is that of Poreh and Cermak [1]. They measured mean concentration 
of ammonia emitted from a surface line source in air in a nonself-
preserving velocity boundary layer; measurements of fluctuating 
concentrations are not reported. They divided the flow field into four 
zones with different features according to the ratio of plume thickness 
to boundary layer thickness. Their measurements were carefully re
viewed by Morkovin [2], who concluded that the eddy diffusivities 
when viewed as properties of quasi-similar fields can account for the 
characteristics of layer developing inside another layer. Some of the 
present results are comparable to those of Poreh and Cermak for their 
"final zone", where the edge of the plume has reached that of the 
boundary layer. Wieghardt [3] measured mean temperature distri
bution behind point and line sources of the surface, but only for the 
zones where the plume thickness is less than the boundary layer 
thickness. 

The roughness effects on the hydrodynamic flow field are restricted 
within ten roughness heights from the wall surface and are discussed 
in detail by Andreopoulos and Bradshaw [4]. So the main effect of 
roughness on plume spread is to increase uT and, therefore, the mixing 
rate throughout the boundary layer. 

The effect of surface roughness on the transport of heat in a heated 
boundary layer has been investigated by Pimenta, et al. [5] while an 
experiment with an elevated point source of heat above a rough wall 
made by Nakayama and Bradshaw [6] showed some similarities with 
the present work. 

1 Present address: SFB 80, Universitat Karlsruhe, W. Germany. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by The Heat Transfer Division 
February 11,1980. 

2 Experimental Arrangements and Techniques 
The experimental program was carried out in the 91 X 91 cm closed 

circuit low speed wind tunnel of the Department of Aeronautics at 
a free stream velocity of 33.5 m/s. The free stream turbulence level 
in the tunnel was less than 0.05 percent at this speed. A flat plate was 
installed in the wind tunnel at mid height. All the measurements were 
made at the end of the plate which has a length of 3.08 m and thickness 
28 mm and is made from plywood. The plate thickness and con
struction were chosen to minimize heat transfer from one side to the 
other. The heat was introduced by three nichrome wires a few milli
meters from the surface near the streamlined leading edge of the plate. 
The boundary layer thickness at the trailing edge of the plate was at 
least 51 mm so that the heated wakes of the wires were fully mixed 
into the turbulent flow; if the plume is fully mixed, the height of the 
source is, of course, immaterial. Two sets of experiments were carried 
out: one with a smooth surface and a second with a rough surface. For 
the latter, the surface of the plate was covered with sand paper which 
has a maximum grain size of about 1.4 mm and a backing thickness 
of about 0.25 mm. The corresponding shift of logarithmic velocity 
profile is AU/ur = 11.5. For both experiments heat input was the 
same, ~ 2 kW; the heating wires were supplied from two autotrans-
formers, the current and voltage being measured by AVO Model 8 
Avometers. 

Mean temperature profiles were measured with Chromel-Alumel 
thermocouples connected to a COMARK differential thermometer. 
One thermocouple was used by monitoring the free stream temper
ature continuously. Turbulence measurements were made with DISA 
55D01 constant temperature anemometers and DISA miniature-
cross-wire probes type 55A38 with 5 fim platinum wires. Temperature 
fluctuations were measured by a 1 /tm "cold" wire (resistance ther
mometers) mounted on a probe clamped to the side of the cross-
wire-probe. The cold wire was operated with heating currents of 1.6 
and 1 mA for the smooth and rough wall flow, respectively. Its output 
voltage was compensated for thermal inertia by a conventional op
erational amplifier network. The time constant is a function of the 
instantaneous velocity normal to the temperature wire. The com
pensator must be set at each operating point because of the velocity 
variation across the layer. However, Smits [14] estimated that an error 
of 10 percent in the mean velocity will cause an error of only 3 percent 
in the sensitivity at high frequencies and the error in broad band 
temperature fluctuation measurements will be much less than this. 

The heating current for the rough wall case was reduced to avoid 
undesirable velocity fluctuations on the temperature wire. The ratio 
of the temperature sensitivity to velocity was found experimentally 
to be of the order of 2.13 X 10 - 3 Cc/m/s. Another estimate of the 
relative sensitivity dT/dll obtained by using Wyngaard's [12] formula 
was twice the previously measured value. The same order of difference 
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is found in Wyngaard's comparisons between the measured and the 
estimated values and is considered to cause negligible velocity effects 
on the temperature wire. 

A "temperature correction" on the x-wire instantaneous signals 
has been applied. It is based on the value of the instantaneous tem
perature and is described by Dean and Bradshaw [13]. The hot-wire 
signals together with those from the cold wire were recorded on an 
analogue tape recorder and digitized later using the departmental 
facilities (for details see Andreopoulos [7]). A roughly steady state of 
the thermal field was reached only after two hr running, since the 
thermal capacity of the plate, the wind tunnel, and its surroundings 
was high. 

The temperature and the velocity fields were found to be uniform 
in the spanwise direction and the flux Richardson number, which 
characterizes the ratio of the buoyant production to the shear pro
duction of turbulent kinetic energy, was found to be very small—on 
the order of 0.0013, for both smooth and rough wall flows. 

3 R e s u l t s and D i s c u s s i o n 
The results are presented in Figs. 1-16 and normalized by the 

maximum temperature difference ATm a x = Tmflx - Te, the friction 
velocity uT, and the boundary layer thickness, 5. Since the turbulent 
Prandtl number is expected to be of the order of unity, the instanta
neous edge of the thermal boundary layer coincides almost exactly 
with the instantaneous edge of the velocity boundary layer; any dif
ference can be ascribed to the differences between molecular diffusion 
of momentum and heat in the viscous superlayer and, in a fluid with 
a molecular Prandtl number near unity, is likely to be very small. 
Therefore, the mean thicknesses are related so that S can be used for 
both. The skin friction coefficients were 0.0024 and 0.0052 for the 
smooth and rough surface respectively while the boundary layer 
thicknesses §995 were 51.5 and 73.94 mm, respectively. The enthalpy 
thicknesses evaluated from the relation 

Jo 

U T-Te 
Ue AT„ 

-dy (1) 

were found to be 0.505 and 0.5295 for the smooth and rough case, re
spectively. 

The wall temperatures Tw were evaluated from 

Tw - Te U, 

AT„ 
— St 

U T-

Ue ATn 

-a (2) 

where the Stanton numbers are (0.00142 and 0.00308, respectively 
and found to be Tw — Te - 0.02 ATm a x for the smooth surface and 
Tw — Te = 0.03196 AT m a x for the rough surface. The mean temper
ature profiles on the two surfaces are shown in Fig. 1. In the region 
outside the inner layer (y > 0.2 5) and up to 0.9 5, there is a difference 
between the rough and smooth wall cases which is present in some 
other quantities, such as ut). This can be attributed to the different 
rate of heat losses through the wall, although in both cases d Tidy very 
close to the wall is very high, indicating that the plate is a good insu
lator. In fact, a rough check on the rate of heat losses evaluated as the 
difference 

iput heat power - j cppTUdy 
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shows that, for the smooth wall case, the losses are 0.4 kW and for the 

Fig. 3 Mean square temperature fluctuation. Symbols as in Fig. 1 

rough, only 0.020 kW. The ratio of the two heat fluxes is like the ratio 
of 5/fATmax, and is about 1.19. Because of the higher heat flux, the 
rough case is bound to have higher AT/ATm a x than the smooth case. 
Apart from that, it has to compensate for the lower U/Ue as well. In 
Fig. 1 Poreh and Cermak's results are presented for comparison. Since 
the scatter is significant, only points from a mean line through their 
data are plotted. The agreement with the present smooth case results 
is quite good, and indicates, as was expected, that the height of the 
heat sources from the wall has already been "forgotten" by the ' 
flow. 

-Nomenclature. 
Cf - skin-friction coefficient, T ,„ / (0 .5 

UJp) 
cp = specific heat at constant pressure 
Q = heat transfer per unit area per unit 

time 
Pr( = (-w/dUldy)l(-vdldTldy) turbulent 

Prandtl number 
St = (QjeT)/(Q/Tw - Te) = (Tw - TC)-

uT/So U(T - Te)dy, Stanton number 
T = temperature (mean) 

9 r = friction temperature, Qwhpu7l, 
u,u,w = fluctuating velocity components in 

x,y,z directions 
U,V,W = mean velocity components in x,y,z 

directions 
uT = friction velocity 
x,y,z = coordinates: x streamwise, y normal 

to surface 
AT = T - Te 

5 = boundary layer thickness 

t9 = fluctuating temperature 
v = kinematic viscosity 
p = density 
T = shear stress 

Subscripts 

e = value at boundary layer edge 
w = value at surface 
max = maximum value 
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The same mean temperature results are plotted against mean ve
locity in Fig. 2. Usually these plots are a straight line meaning that 
the turbulent Prandtl number is 1 as in the results of Pimenta, et al. 
[5] for a heated rough wall case. The present results do not show ex
actly this feature. In fact, they exhibit two distinct regions with almost 
constant dT/dU each. The first region has the same dT/dU as Pi
menta, et al. and is extended up to 0.85 5, a point where the inter -
mittency is 0.5. The second region is probably affected by the highly 
intermittent character of the flow and has three times greater dT/d U 
than the first region; in order to maintain Prandtl number equal to 
l,uu/ui? has to vary inversely, and in proportion, to dT/dU between 
the two regions. Exactly similar behavior characterizes Poreh and 
Cermak's results, while the results of Blackwell [8] for a smooth heated 
wall show some similarities to the dual behavior of dT/dU in the 
present results. In Fig. 2, the results of Johnson [9] are also plotted 
to indicate the behavior of a thermal layer when only partially mixed 
inside a boundary layer. Plots in these coordinates are useful in giving 
an estimate of dT/dU. So any differences in level among the results 
in Fig. 2 may not be important although they can be attributed to the 
quite different boundary conditions. But T/U is strictly a function 
of ur/Qr and any comparison should take that into account. 

Figure 3 shows the t?2 distribution. The inner layer fluid is well 
mixed so that i?2 is small; in the outer intermittent region, however, 
partly mixed fluid alternates with cold free-stream fluid and i?2 

reaches a maximum at y = 0.85 <5, almost the point with intermittency 
of 0.5 or maximum crossing frequency and also very close to the point 
of maximum dT/dU. 

In Figs. 4-7, the second order velocity-correlation or correlation 
coefficients are shown. There are some differences between rough and 
smooth wall cases in u-d and ui? plots, similar to those that appeared 
in the mean temperature profiles. These differences are expected as 
a higher heat flux is required in the rough wall case, because the 
boundary layer grows faster and a greater rate of heat transfer in the 
outer layer is needed to maintain self-preservation. Very close to the 
wall, u-d falls to smaller values on the rough wall than on the smooth 
wall. (The lit? correlation coefficient does not indicate any difference 
between the two cases.) It is worth noting that ud remains negative 
throughout the boundary layer while ud changes sign very close to 
the wall (indicating heat losses to the wall) but not exactly at the point 
where dT/dy changes. Turning to the dimensionless parameters, the 
ratio ud/v& in the region above y = 0.5 <5 has a value of -2 .0 for both 
cases, which is in agreement with that found by Pimenta, et al. close 
to a uniformly heated surface. In this sense, the present "plume" flow 
field indicates similar behavior to a heated wall flow. For comparison, 
the results of Pimenta, et al. and Antonia, et al. [15] for half heated 
wall have been plotted in Figs. 4 and 6. There are some differences 
between the present results and the heated wall cases especially in 
vd for y Z0.5 b. In this region, vd drops quicker than ui) and it behaves 
like the viscous sublayer region of the heated wall case, resulting in 
a rise in the ud/vd. Even in the outer layer there are some differences 
in JRU1> and RVI} between the present flow and that of Pimenta, et al. 
Rv$ in the present flow reaches a maximum value of +0.38 while the 
heated wall flow has a maximum value of +0.62 which seems to be very 
large since Ru„ is only —0.5 at most. In the outer layer, Ruj in the 
present case reaches values of -0.62 while Pimenta's value is consis
tently —0.75 throughout the boundary layer even close to the wall 
where, according to Launder [10], a high value of Ru$ is due to the 
diminishing effectiveness of the mean strain distruction of ui? as the 
wall is approached. Close to the wall in the present case Ruo drops, 
basically because u2 and t?2 drop while ud is roughly constant. For 
comparison, the results of Fabris [11], in the wake of a heated cylinder, 
are plotted in Figs. 5 and 7. His Ru$ agrees with the present results 
(both have a maximum value of —0.62) and his R„o is appreciably 
higher but his RUv is rather high (maximum value of 0.54). Kovasznay 
and Ali [16] obtained correlation coefficients in a heated self-pre
serving two-dimensional symmetrical turbulent wake of a flat plate. 
The scatter in their results is significant and the lack of symmetry 
(stickly antisymmetry) between the lower and the upper half of the 
symmetrical wake in R„e and Ruv make a direct comparison rather 
difficult. Their RVd for the lower side of the wake is something be-
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Fig. 9 Triple product vd2, symbols as in Fig. 1 

tween 0.36 and 0.5 and for the upper side is 0.83. Apart from that their 
Ruu increases from 0.4 in the boundary layer at the trailing edge to 0.6 
in the wake which is considered to be rather high in the light of a new 
concept of the turbulent near wake that the outer parts of the wake 
do not change in their turbulent structure significantly with x as it 
has been proposed by Andreopoulos and Bradshaw [17]. The turbu
lent Prandtl number is plotted in Fig. 8 together with that of Pi-
menta's, et al. experiment. In the outer part of the boundary layer Pr ( 

reaches a value of 1 (while the most popular value was found to be 
around 0.9) and is continually decreasing towards the wall. Very close 
to the wall the values of Pr t are suspicious since they jump from 0 to 
infinity, because of the change in sign of ut>. 

In Figs. 9-16 some of the third order velocity temperature corre
lations are presented. The vD2 correlation represents the normal 
transport of i?2 by v -fluctuations in the turbulent transport term 
dvd2/dy in the transport equation. The ui?2 is the streamwise 
transport by u of i?2 and appears in the longitudinal diffusion term 
dut)2/dx. In the present case, or anywhere where the thin shear layer 
approximation is valid we expect dud^/dx «dvd2/dy. If we define 
a lateral convection velocity of $2 like v0 = vd 2/i? 2 we obtain a better 
picture of the turbulent transport of i?2. This structural parameter 
is plotted in Fig. 10. Fory > 0.6 d, !>2 is transported outwards, towards 
the free stream, as in the case for all transported quantities in the 
outer part of a growing boundary layer. Nearer the surface, where the 
fluid is well mixed and <?2 is smaller, i92 is transported (again down 
its gradient) towards the surface. For y < 0.15 8 approximately, 
transport is again outwards; this is probably the result of slight heat 
transfer to the wall, leading to significant dT/dy and iP generation 
very close to the surface. 
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Fig. 10 Bulk transport velocity v#* = v&2/W, symbols as in Fig. 1 
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The balance of the various terms involved in the i?2 transport 
equation is shown in Fig. 11. Since AT I Ay » AT I Ax, the generation 
is approximated by uddT/dy only. The molecular diffusion is also 
completely neglected since it is two orders of magnitude less than the 
other terms. The thermal dissipation or distruction 2t$ is obtained 
by difference and all terms are nondimensionalized by 6/iiTATmax. 
The maximum of the generation term occurs at y =_0.1 8; recall that 
in the case of a heated wall flow the generation of $2 reaches a maxi
mum very close to the wall. Here the J?2 generation is drastically re
duced for y <0.7 8, because both vS and dT/dy are small nearer the 
surface. For y less than 0.8 8 the mean flow transport term is a gain 
in the control volume sense (Dt?2/Di <0); it reaches a maximum at 
about 0.4 8 and then dies out close to the wall. Near to the wall there 
is a gain by turbulent transport which supplies the destruction 
(thermal conductivity) term since generation is negligible. At the outer 
edge, i.e., for y >0.75 8, turbulent transport is small, while mean 
transport has a significant loss (Di)2/Dt>0) almost equal to the dis
sipation in the smooth case. This is in contrast to the turbulent energy 
balance in which mean and turbulent transport are roughly equal and 
opposite, and larger than the other terms. As would be expected, the 
x92 balance is almost the same for both smooth and rough cases when 
normalized on uT. 

The plot of the bulk convection velocity of vd (Fig. 13) illustrates 
the transport of u d by u. It reaches a positive maximum at the outer 
edge—considerably larger than the entrainment velocity which is 
about 8uT—while_near the wall vd is transported towards the wall, 
as in the case_ of i92. Figures 14-16 show the streamwise transport 
velocities of i?2, u i?, v d; the sum of the transport velocity and the mean 
velocity of the fluid is an acceptable, though not unique, definition 
of the convection velocity of the temperature fluctuation pattern. The 
convection velocities of the three quantities behave in qualitatively 
the same way as each other, the convection velocity of the turbulent 
energy, q2u/q2 + U being more than the mean velocity in the inner 
layer but less in the outer layer. However, there are detailed differ
ences and, in view of the odd behavior of ui? in the adiabatic wall flow, 
the convection velocity of i?2 is probably the most representative. Note 
that the difference between the mean velocity and the convection 
velocity is not attributable to molecular convection; although heat 
is almost a permanent contaminant moving with the fluid, high 
temperature regions may be preferentially correlated with, say, low 
u—component velocity leading to negative ui3, and similarly regions 
of large !?2 correlated with regions, of say, low u lead to negative 
^ J 2 . 
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4 C o n c l u s i o n s 
The above measurements are believed to give a good picture of the 

second and third order temperature-velocity correlations and corre
sponding structural parameters, in smooth and rough wall boundary 
layers far downstream of a line source of heat. Previous measurements, 
such as those of Wieghardt [3] and Poreh and Cermak [1], include only 
mean concentration results. The outmost part of the thermal layer 
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behaves like a hea ted-wa l l layer ( the exac t source of t h e h e a t t r a n s 

po r t ed in to t h e ou te r layer by t h e large eddies be ing near ly i m m a t e 

rial) and t h e h e a t t r ans fe r exhib i t s s imilar i t ies wi th m o m e n t u m 

t ransfer . T h e t empera tu re -ve loc i ty corre la t ion coefficients RU1) a n d 

Rut> are a b i t less t h a n those of a uni formly h e a t e d wall e x p e r i m e n t 

of P i m e n t a , e t al. [5] (which m a y be r a t h e r h igh) . 

T h e m a x i m u m ra t e of genera t ion of t e m p e r a t u r e f luc tua t ions oc

curs a t a b o u t 0.7 8 while t h e m e a n squa re t e m p e r a t u r e f luc tua t ion 

itself peaks a t roughly 0.9 S. T h e t u r b u l e n t P r a n d t l / S c h m i d t n u m b e r 

P r t r eaches a value close t o un i t y in t h e ou te r half of t h e layer, a n d is 

in a g r e e m e n t wi th previous resul t s for h e a t e d walls. Nea re r t h e wall 

the characteristics are very different from those of a heated-wall layer 

since t h e fluid is well m ixed a n d t e m p e r a t u r e f luc tua t ions are com

paratively small. T h e wall in t h e present exper iment was not perfectly 

adiabat ic and resul ts for y <0 .1 S approximate ly are no t t rus twor thy ; 

in any case, a t t emp t s to evaluate P r ; in t h e region close to t h e wall are 

fruitless since t h e hea t flux ra te and t e m p e r a t u r e g rad ien t bo th t e n d 

to zero, b u t the t r end P r ( is towards a value of zero near the nominally 

ad iaba t i c wall. 
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Analysis of Heat Transfer During 
Hydrair Cooling of Slab-Shaped 
Food Products 
Part I: Theoretical Investigations 
Hydrair cooling of perishable food products is expected to incorporate the advantages of 
both air cooling and hydrocooling processes. This technique consists of passing cold air 
over a product which is continuously wetted by a spray of chilled water. In this paper, a 
mathematical model for the hydrair cooling of slab-shaped food products is proposed. The 
set of differential equations for heat transfer through the product and the wetting liquid 
are solved simultaneously, using finite difference method. It is observed that the process 
of hydrair cooling is advantageous at lower values of the film Reynolds number for higher 
Biot number values. The cooling speed and the governing parameters are correlated. 

In troduc t ion 
Hydrair cooling, which consists of passing cold air over the product 

which is continuously wetted by a spray of chilled water, is under 
preliminary stages of investigation and is expected to combine the 
advantages of both air cooling and hydrocooling. This process has been 
experimentally studied by some investigators [1-3] and has been re
ported to be even better than hydrocooling under certain operating 
conditions. However, analytical studies of this process yielding 
time-temperature histories and cooling times are not reported in lit
erature. 

Cooling of food packages is quite common in the food industry. For 
purpose of analysis, such packages can be treated as slabs. In this 
paper, a mathematical model of the hydrair cooling of food products 
which can be approximated to the shape of slabs is presented. The 
energy equation in dimensionless form for the product and for the 
water film are solved simultaneously using finite difference technique. 
The results are obtained in terms of dimensionless parameters cov
ering the product properties and processing conditions encountered 
in food cooling practice. 

T h e o r e t i c a l A n a l y s i s 
Description of the Physical Model. The physical model used 

for the analysis of the problem is represented in Fig. 1. The product 
having an initial temperature of Tpo is exposed to a film of water 
having an initial temperature of T/o. Cold air with a wet bulb tem
perature, Ta flows over the wetted product yielding a uniform surface 
heat transfer coefficient, h. The product has thickness lb, length L 
and a large width compared to the thickness. The liquid film over the 
product has uniform thickness, 5. Both heat transfer and mass transfer 
take place from the surface of the liquid film to the stream of cold 
air. 

Formulation of the Problem. The coordinate system for the 
analysis is shown in Fig. 1. Application of the continuity momentum 
and energy equations to the layer of flowing liquid results in the 
governing equation of the form 

Oif (1) 
cVy/2 iixf dt 

where vx denotes the velocity at any point y/ in the liquid film. For 
smooth, laminar two-dimensional flow over a vertical surface, vx is 
given by [4], 

y§ (2) 

Equation (1) suggests that a two-dimensional temperature profile 

Contributed by the Heat Transfer Division fot publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
November 19,1979. 

prevails within the liquid film, the x -direction gradient being due to 
the flow of the liquid. However, the velocity of the liquid film being 
very small, the gradient in the * -direction will not be appreciable. 
Moreover, a stagnant layer of liquid can be expected to exist at the 
product-liquid interface. Thus a uniform temperature can be assumed 
to exist at the product-liquid interface and the heat transfer in the 
product can be considered unidimensional. 

The one-dimensional conduction equation in the slab is written 
as, 

a2rD 1 dTp 

ot„ dt 
(3) 

^>yP
i " P 

The initial and boundary conditions of equation (1) are obtained 
as follows. 

The initial uniform temperature within the liquid film yields 

Tf = Tf0 at t = 0 for 0 < yf < 8 and 0 < xf < L (4) 

A continuous flow of water is assumed from the top of the product 
to maintain a film of flowing water. This gives the condition, 

Tf = T/o at xf = 0 for 0 < yf < 5 and t > 0 (5) 

At the surface of the water film, the energy exchange with the air 
stream takes place by a combination of sensible and latent heat 
transfer. 

The latent heat transfer which accompanies the mass transfer is 
a function of the moisture content, W of the air stream and the total 
heat transfer per unit area due to the sensible and latent heat transfers 
can be expressed as [5], 

Water f i lm 
(Initial temp. Tf0) 

0 

Product 
(initial temp. 

Tpo) 

fr 

SCf, 

Air f low 
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Air f low 

( T a . h ) 
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Fig. 1(a) Physical model 

- y P 

Fig. 1(f>) Coordinate system 

Fig. 1 Physical model and coordinate system 
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dQ = h(Ts - Ta) + - H'ttW. ~ W) (6) 

Stoecker [5] has shown that the right hand side of the above 
equation can be expressed, with sufficient accuracy as a function of 
the difference between the enthalpy of the saturated film and the 
enthalpy of the unsaturated air. Thus, an energy balance at the liq
uid-air interface yields 

h 
-kf 

tyf 
•(H.-Ha) 

at 37 = 8 for xf > 0 and t > 0 (V) 

Where Ha is the specific enthalpy of the free stream air which is 
generally unsaturated. The enthalpy of unsaturated air can be rep
resented with sufficient accuracy by the enthalpy of saturated air at 
its thermodynamic wet bulb temperature [6]. The enthalpy of satu
rated air can be expressed as a function of the temperature by a second 
degree polynomial as, 

H = A0 + A1T + A2T
i (8) 

At the product-water interface, a good thermal contact between 
the two is assumed to exist, resulting in the same temperature for both 
product and water film. Thus, 

Tp = Tif at yp = b for 0<xf < L and £ > 0 (9) 

Tf = 7 ; /a t 37 = Ofor0< : t / < L and £ > 0 (10) 

Equations (1,4,5,7) and (9) completely define the problem of heat 
conduction in the liquid film. 

Based on the physical model, the following initial and boundary 
conditions are written 

Tp = Tpo at t = 0 and 0 < yp < b 

i>TD 

— £ = 0 at yp = 0 and t > 0 

-kD 

<>Tp 

t>yP 

, dTf -fy — a t y p •• 
tyf 

b for t > 0 

(11) 

(12) 

(13) 

Equations (3,11,12) and (13) completely define the problem of heat 
conduction within the product. 

In order to obtain the results in a generalized form, the governing 
equations and boundary conditions are nondimensionalized using the 
following definitions. 

b \ 
Xf" 

Tif* 

Xf 

L 

Tpo ~ Ta 

Tif - Ta 

Tfo ~ Ta 

yt* = y yP*: 

TV* = Tf 

b 

-Ta 

••- b* 

b 

TVo - Ta 

TVo - Ta 

Tpo — Ta 

T* = 

L 

Ts-Ta 

TVo — Ta 

„ . hb , k„ 
Bi = — k*=^ 

kp kf 

} (14) 

t* =-
uD t 

a; b2 

Upon introduction of equations (8) and (14), the governing equa

tions and boundary conditions take the following dimensionless 
form. 
Product 

i>2TD 

dTp* 

dyp* 

dyp*
9- dt* 

l a t t * = 0 f o r 0 < y p * < 1 

•• 0 a t y p * = Ofort* > 0 

dTp* _ RT <>Tf* 

dyp* k* 8* i>yf* 
a t y p * = l f o r t * > 0 

Liquid film 

L. = £) —'— + D2 \ys* - 11—\ —I— 
dy/*2 dt* \ 2 / dxf* 

Tf* = 1 at t* = 0 for 0 < yf* < 1 and 0 < xf* < 1 

Tf* = 1 at Xf* = 0 for 0 < yf* < 1 and t* > 0" 

Tf* = Tif* at >7* = 0 for 0 <xf* < 1 and t* > 0 

dTV* 

for 0 < x/* < 1 and t* > 0 

- [ £ 1 r s * + £ 2 T s * 2 ] a t 3 ' / * = l 

where 

Dt 

D1 = a* 5*2 

= 3 Pr/ Re/ b* 5* 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

In equation (25), Re/ denotes the film Reynolds number given by 
[4] 

R e ' = 3 ^ 

In equation (23), 

Et = Bik*8* 
'At + 2 A2 Ta 

CP + WCpw 

and 

E 2 = Bife*5*A2 
T/o - Ta \ 

€P + wcj 

(26) 

(27) 

(28) 

In the above equations, though E\ and E2 are dimensionless, the 
temperature parameters T/o and Ta still appear explicitly. These are 
nondimensionalized by defining a new temperature parameter, T+ 

as follows. 

T+-. 
A2T 

(29) 

The specific heat of air at constant pressure, Cp, is assumed to be 
constant at 1 kJ/kg-K. The quantity WCpul may be assumed constant 
at 0.021 kJ/kg-K. 

The coefficients of equation (8) for the range of wet bulb temper
ature from —10 to +10°C are 

- » — — - - - - - N o m e n c l a t u r e ~ ~ ~ . m - » - — - -

b = half thickness of product 
Bi = Biot number 
Cp = specific heat of dry air 
Cpw = specific heat of water vapour 
g = acceleration due to gravity 
h = convective heat transfer coefficient 
H = specific enthalpy of moist air 
Hfg' = enthalpy of evaporation of water at the 

temperature of wetted surface. 
k = thermal conductivity 
L = height of the product 
Pr = Prandtl number 
Re/ = film Reynolds number 

RT = temperature ratio defined in equation 
(14) 

t = time 
T = temperature 
ux = velocity of film flow 
W = humidity ratio defined as mass of water 

vapour in air per unit mass of dry air 
x,y - coordinate distances 
Z = half-cooling time of dimensionless time, 

t* 
a = thermal diffusivity 
8 = film thickness 
v = kinematic viscosity 

Subscripts 

0 = initial condition 
a = air wet bulb 
/ = water film 
if = product water interface 
p = product 
s = air water interface 

Superscr ipts 

* = nondimensional quantity defined in 
equation (14) 

+ = nondimensional independent parameter 
defined in equation (29) 
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A0 = 9.30770 Ai = 1.75289 A2 = 0.02193 (30) 

which yield H in kj/kg. 
On substitution of the above constants, equations (27) and (28) 

transform into, 

Ei = Bi k* 5* (1.70918 + 2 Ta + ) 

E2 = Bik* 5* RT(Tp0
+~Ta+) 

(31) 

(32) 

Method of Solution. The solution of the differential equations for 
the product and the film given respectively by equations (15) and (19) 
is obtained using a finite difference method which approximates the 
derivatives in the differential equation with finite difference analogues 
at each nodal point, thereby reducing the solution of the differential 
equation to the solution of a set of algebraic equations. An implicit 
form of the finite difference method, namely, the backward difference 
scheme, has been chosen as it does not have a restriction on the size 
of the time step for stability. The algebraic equations formed, con
stituted a tri-diagonal set of equations which is solved using Thomas 
algorithm [7]. The procedure adopted for the simultaneous solution 
of the two differential equations is as follows. 

Initially, a value is assumed for Tif* in equation (22) to solve the 
energy equation of the film. dT//dy/* at yf* = 0 is then determined 
along Xf* = 0 from which an average value of dTf*/dy/* over Xf* = 
0 to 1 is calculated. This is used in equation (18) and the energy 
equation for the product is solved. The value of Tp* at yp* = 1 so 
obtained is compared with the value corresponding to the assumed 
value of Tif*. If they are different, another value of Tif* is chosen and 
the procedure is repeated. This is continued until the assumed value 
and the one calculated from the solution of equation (15) agree within 
allowable tolerance. In the actual computation, an iteration technique 
described in [8] is used by which the correct value of Tif* is, in most 
cases, obtained in three trials. 

E e s u l t s and D i s c u s s i o n 
The results are computed for the following governing parame

ters. 
1 The dimensionless wet bulb temperature of air, Ta

 + is varied 
from 0.04 to 0.2 in increments of 0.04. This corresponds to a wet bulb 
temperature range of 2-10° C. 

2 The dimensionless initial water temperature, T/o+ is varied from 
0.1 to 0.4 in increments of 0.1. This corresponds to a temperature 
range of 5-20°C. 

3 Biot number is varied from 0.1 to 10.0 as 0.1,1.0, 5.0 and 10.0. 
This range of Bi values covers air velocities up to 5 m/s, characteristic 
dimension of the product up to 30 cm and thermal properties of a wide 
variety of products. 

4 The film Reynolds number, Re/ is varied from 0.1 to 1000 as 0.1, 
1.0,10.0,100 and 1000. This corresponds to a film thickness range of 
0.04-0.9 mm. 

The above ranges of parameters cover the processing conditions, 
product sizes and thermophysical properties normally encountered 
in precooling practice. 
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As the main emphasis in the analysis is on the effect of process 
parameters, the product-dependent parameters such as Tp0

+, h*, a*, 
8* and b* are given representative values during computation. 

For the above values of variables, analytical results are obtained 
in terms of dimensionless temperature within the product against 
dimensionless time parameter. The analysis also yields the temper
ature profile across the product sections. 

Figure 2 shows typical temperature profile within the product at 
different times. The sudden temperature drop seen at the product 
surface is the result of direct contact with the water film and the ac
companying high initial heat transfer potential existing at the sur
face. 

Figure 3 shows the effect of variation of Re/ at a low value of Ta
 + . 

At the chosen values of other parameters, there is no effect of Re/ for 
its values greater than 1. Also, the final product temperature ap
proaches the initial water temperature, indicated by RT for Re/ > 1. 
Re/ < 10 results in a higher product temperature in the beginning of 
the cooling process than for Re/ > 10. This is because, in the beginning 
of cooling, higher heat flux from the product produces a higher in
terface temperature than T/o due to the insufficiency of film flow for 
carrying away all the heat. However, at the later stages of cooling, the 
interaction of air with water film helps to reduce the film temperature 
in the case of low Re/. 

The effect of varying Re/ at a high value of Ta is given in Fig. 4. This 
condition represents a smaller temperature difference between water 
and air. Here also, the trend in cooling characteristics is similar to that 
in Fig. 3. Cooling with low Re/ is slower because of low interaction 
between air and water due to low value of Bi. 

Figure 5 shows the effect of varying Re/ at a low value of Bi. It is 
found that the cooling rate increases with Re/ up to a value of Re/ = 
10, beyond which the influence of Re/ is negligible. The increase in 
cooling rate with Re/ is due to the condition of low Bi considered here 
which stipulates a low heat transfer coefficient. Hence the contribu
tion of air in the cooling process is not significant and the cooling rate 
is mainly dependent on the liquid flow rate which increases with 
Re/. 

The effect of varying Re/ at a high value of Bi is presented in Fig. 
6. It may be seen that the trend in cooling characteristics is reversed 
in this case compared to that at low value of Bi. Due to the high Bi 
considered, the influence of air will be significantly felt in the cooling 
of the film at lower values of Re/. Hence the cooling rate is higher at 
low values of Re/. 

In Fig. 7 the effect of variation of Bi is given at two different values 
of T/o. It may be seen that for values of other parameters considered, 
variation of Bi over a wide range produces very little effect on the 
cooling characteristics for T/o+ = 0.1 whereas for T/o+ = 0.4, the in
fluence of Bi is significant. This is because, in the latter case, the 
temperature difference between water and air is high, which results 
in higher heat transfer potential. This produces greater cooling at 
higher Bi values. However, it may be seen that the smaller difference 
between air and water produces faster cooling rates. 

The effect of Bi variation at a low and a high value of Re/ is shown 
in Fig. 8. As may be seen, there is considerable increase in the rate of 
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cooling as Bi is increased. This is due to the fact that at high Bi, there 
is more effective interaction of air and water, resulting in the fast re
duction in the film temperature which approaches the air temperature 
represented by 0 on the Tp* scale. This can be seen from the curves 
for surface temperature. At very high Re/, variation of Bi does not 
influence cooling because the high flow rate associated with high Re/ 
is not influenced by the air flow. 

Effect of parameters such as Tp->
+, k*, a*, 5* and b* have also been 

studied by varying them over wide ranges for fixed values of other 
parameters. It is observed that only a negligible effect on the cooling 
characteristics is produced by these parameters with the exception 
ofTp0

+. 
Figure 9 shows the effect of variation of Tpo

+ on the cooling char
acteristics. It may be observed that the cooling rate increases with 
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Fig. 9 Effect of initial product temperature 

Tp0
+ at Re/ = 10 whereas at Re/ = 0.1, the effect of Tpo

+ on the 
cooling rate is seen to be not significant. Since, as indicated earlier, 
at higher Re/, the cooling is mainly dependent on Tfo, as Tpo increases 
for a given T/0, the temperature gradient within the product also in
creases resulting in faster cooling rates. At lower Re/, due to the 
smaller film thickness, the film temperature is influenced by the 
temperature of both product and air. Hence, as Tp0 increases, the 
actual film temperature also increases because there is no appreciable 
change in the temperature gradient within the product. This results 
in the cooling rate being unaffected significantly as Tpo

+ is 
changed. 

The preceding discussions reveal that the major influencing pa
rameters on the hydrair cooling process are Re/, Bi, Tp0

+ and the 
difference (AT),,,/ between the initial temperature of water and the 
wet-bulb temperature of the air defined by, 
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( A D ^ i y - T V (33) 

With a view to correlate the factors that affect the cooling, the first 
half cooling time, Z0.5 is taken to indicate the cooling speed. In con
ventional cooling practice, half-cooling time is a measure of cooling 
speed. In hydrair cooling, due to the variation of the temperatures of 
water film during the cooling period, it is observed that half-cooling 
time does not remain constant throughout the cooling process. 
However, the first half-cooling time may be taken to compare the rate 
of cooling under different conditions. Of the variables affecting 
cooling, it has been shown that the value of the film Reynolds number 
Re/ governs the pattern in which the different parameters affect the 
cooling rate. Thus, it may be seen that when Re/ is included, the 
variables become uncorrectable. Hence a correlation of the first 
half-cooling time, Z0.5 with (AT)„/, Bi and T p 0

+ is obtained for dif
ferent constant values of Re/. 

In the discussion on the effect of varying Re/ it is shown that hydrair 
cooling is effective only at lower values of Re/. This is because only 
at low Re/ the presence of air influences cooling and the product 
temperature tends to the wet bulb temperature of air at higher Bi 
values. At high values of Re/, due to the greater liquid flow rate, even 
higher air velocities have only very little effect on the liquid temper
ature. The influence on product temperature is therefore corre
spondingly less. Hence for purpose of correlation, three constant 
values in the lower range are chosen for Re/, namely, 0.2,0.5 and 1.0. 
The correlation is obtained by the multiple linear regression analysis 
and is of the form 

Z0.5 = ai(AT)a,/"2 Bi°3 Tpo
+°< (34) 

The coefficients ait a2, a3 and a4 are given in Table 1. 

Table 1 Z0.5 '= ai(AT) a , f« Bi "* Tp0+»* 

Prod
uct 

Geo
metry Re/ 

0.2 
SLAB 0.5 

1.0 

ai 

0.7116 
0.6714 
0.6942 

0 2 

0.0773 
0.1057 
0.1421 

0 3 

-0.1777 
-0.1033 
-0.0668 

04 

-0.0946 
-0.1492 
-0.1506 

Correlation 
coefficient 

0.987 
0.970 
0.949 

The correlation covers values of (AT)„r/ up to 0.16, Bi up to 5.0, Tpn+ 

from 0.4 to 0.7 and is applicable over wide ranges of a*, k*, 5* and b* 
as it is found that the effect of varying these parameters has negligible 
influence on cooling. 

The correlation can be used for quick estimation of the first half-
cooling time of products when the processing conditions and product 
properties are known. This would also be useful in obtaining an idea 
about the relative performance of the hydrair cooling process com
pared to other precooling techniques. 

The accuracy of the analytical prediction has been established with 
the help of elaborate experimentation, the details of which will be 
presented in a subsequent report. However, for purpose of compari
son, the predicted and measured responses obtained for an experi
mental model for a typical set of governing parameters are given in 
Table 2. 

Concluding Remarks 
An analysis which yields the time temperature histories during 

hydrair cooling of slab-shaped food products is presented. The cooling 
speed and the governing parameters are correlated. It has been ob
served that hydrair cooling process is beneficial at lower values of film 
Reynolds number, i.e. at lower film flow rates, for smaller differential 
between air and water temperatures. The cooling effect is pronounced 
at higher value of Biot number, i.e., at higher air velocities. 
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Table 2 Comparison of predicted and measured response at center of product 

Product—Food Model Size—12 X 12 X 2 cm 
Composition—100 water:40 sugar:3 agar (by weight) 

t* 
rp * 

Predicted 
Tp* 

Measured 

0.0 
1.000 

1.000 

0.2 
0.900 

0.810 

Tp0
+ = 

0.4 
0.710 

0.650 

0.764 T/0+ = 
0.6 
0.550 

0.520 

= 0.252 Ta
 + 

0.8 
0.435 

0.415 

•• 0.235 Bi = 0.545 Re/ = 0.19 
1.0 1.2 1.4 
0.340 0.265 0.210 

0.325 0.260 0.205 

1.6 
0.165 

0.160 

1.8 
0.130 

0.125 

2.0 
0.105 

0.100 
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This section contains shorter technical papers. These shorter papers will be subjected to the same review process as that 
lor full papers. 

Variances in Solar Collector 
Performance Predictions Due to 
Different Methods of Evaluating 
Wind Heat Transfer 
Coefficients 

J. W. Ramsey1 and M. Charmchi1 

Nomenclature 
A = surface area of collector 
C = circumference of collector 
hw - wind-related heat transfer coefficient 
I = solar flux incident on the collector 
k = thermal conductivity of ambient air 
qu = rate of useful heat collection per unit collector area 
Ta = ambient temperature 
Tin = fluid inlet temperature 

Introduction 
Any analysis of a flat-plate solar collector requires knowledge of 

the wind-related heat transfer coefficient at the outer surface of the 
outermost cover of the collector, hw. Most papers follow the recom
mendations of recent texts [1, 2, 3] and evaluate the hw by employing 
the average heat transfer coefficients based on the equation 

hw = 5.7 + 3.8 t /„; W/m2 • °C (1) 

where U„ is the wind velocity (m/s). It has been pointed out previ
ously [4] that equation (1) is inappropriate for the evaluation of hw 

since it neglects the effects of wind direction and collector dimen
sions. 

Experimentally determined average heat transfer coefficients for 
forced convection airflow over square and rectangular plates that are 
inclined at various angles of attack to the oncoming flow have been 
reported in [4] and [5], respectively. Fortunately, the wind-related 
heat transfer coefficients were found to be quite insensitive to the 
angle of attack and to the aspect ratio of the plate, and a global cor
relation equation was proposed [5] 

/i„, = 0 .86^-Re l c
1 / 2 Pri / 3 (2) 

with the characteristic dimension, Lc, defined as 

Lc = 4 A/C (3) 

The Reynolds number range investigated extended from about 20,000 
to 100,000. The strict adherence of the data to a half-power Reynolds 

1 Department of Mechanical Engineering, University of Minnesota, Min
neapolis, Minn 55455. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division June 
10,1980. 

number dependence facilitates extrapolation of the results to higher 
Reynolds numbers. 

The data of [4 and 5] clearly demonstrate that equation (1) is in
appropriate for evaluating hw for solar collectors, (e.g., at (/„, = 4.5 
m/s the value of hw calculated using equation (1) is 3.8 times greater 
than that calculated using equation (2)). However, the question of how 
important this is to the estimated performance of the entire collector 
was not addressed previously. In the present study, the operating 
performance of four different collector configurations are predicted 
using both the inappropriate and appropriate relations to evaluate 
hw. 

Collector Geometry and Analysis Model 
All four of the collectors analyzed were of the basic liquid heating 

type shown schematically in Fig. 1. The differences between them 
were in the type of collector plate surface coating and the number of 
covers employed. Specifically, the four combinations analyzed are: 
one or two covers and a selectively absorbing surface coating, and one 
or two covers and a nonselectively absorbing surface coating. These 
combinations span a broad range of expected performance and, thus, 
provide a comprehensive picture of the effect of the prediction method 
used for hw. The solar absorptance and infrared emittance of the se
lective coating were taken as 0.95 and 0.1, respectively. In the case of 
the nonselective coating, both the solar absorptance and infrared 
emittance were assumed to be 0.95. The covers were 0.32 cm thick 
sheets of glass. The inner cover was positioned with a space of 2.54 
cm between it and the collector plate. The cover spacing for the two-
cover configurations was also 2.54 cm. 

The dimensions and materials for all four of the collectors analyzed 
were as follows: a 0.076 cm thick steel collector plate with integral 
tubes positioned with center-to-center spacings of 7.62 cm, inner and 
outer tube diameters of 0.49 cm and 0.78 cm, respectively, tube and 
collector length of 1.-83 m, and a 7.62 cm thick layer of insulation 
(thermal conductivity = 0.041 W/m-°C) on the back side of the col
lector plate. 

The analysis of the collectors was performed using the well-docu
mented Hottel, Whillier and Bliss (HWB) approach [1-3]. Using this 
model, the rate of useful heat delivered by the collector per unit ab
sorber area is expressed by 

Solar Radiation 

Tube 

-Transparent 
Covers (I or2) 

Surface 
Coating 

Insulation 

Fig. 1 Schematic of the generalized collector configuration for which the 
analysis was performed 
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qu = FRl(ra)J-UL(Tin~Ta)} (4) 
Since the details of the HWB model are well documented, the present 
discussion will concentrate on how the heat transfer coefficient at the 
outer surface of the collector affects the collector performance factors, 
Ui, FR and [ja)e which appear in equation (4). 

The quantity UL is the overall heat loss coefficient which includes 
conduction through the insulation, radiation and natural convection 
between the plates, and radiation and convection between the top 
cover plate and the environment. Therefore, the value of UL is directly 
dependent on hw. 

The quantity FR is referred to as the heat removal factor which is 
the ratio of the actual energy delivered by the collector to the energy 
which would have been delivered if the entire collector plate had been 
at the temperature of the fluid entering the collector. One of the pa
rameters which appears in the defining equation for FR is UL- Since 
hw is one of the ingredients of UL , it follows, at least in principle, that 
FR depends on fiw. Later, it will be shown numerically that this de
pendence is small. The effective transmittance absorptance product, 
(rate, which appears in equation (4) is a radiation property and is not 
affected by hw. 

Illustrative calculations will now be performed to demonstrate how 
qu/I, FR and UL are affected by the equations used to compute hw. 

Results and Discussion 
In performing the calculations, the general procedure summarized 

in [1] was followed. However, one significant difference was that the 
natural convection heat transfer in the air space between plates was 
evaluated using the results of more recent investigations [6], The 
working fluid in the collector was water and a mass flow rate per unit 
collector surface area of 0.0135 kg/s-m2 was used for all calculations. 
The characteristic length, Lc, used in evaluating hw from equation 
(2) was 3.18 m (collector dimensions 1.83 m X 12.2 m (6 ft X 40 ft)). 
The collectors were assumed to be at an angle of 60 deg from the 
horizontal. Calculations were carried out for incident flux levels 
ranging from 200 to 1000 W/m2 taken in steps of 100 W/m2. Three of 
the collectors were evaluated at inlet and ambient temperatures of 
85 and 20 °C, respectively. The fourth collector was evaluated at re
spective inlet and ambient temperatures of 50 and 0 "C. 

Table 1 presents a summary of the results obtained for a wind speed 
of 4.5 m/s (approximately 10 mph). The sets of UL and FR values 
which result when hm is appropriately or inappropriately evaluated, 
using the respective equations (2) or (1), are included. The hw values 
obtained using equation (2) are 6.0 and 5.9 W/m2-°C for ambient 
temperatures of 20 and 0 °C, respectively. The hw calculated from 
equation (1) is 22.8 W/m2-°C, a value 3.8 times too large. 

The values of F R and UL contained in Table 1 are averages of the 
results for those flux levels that yielded a positive energy collection. 
In all cases, the variations in FR and UL with respect to incident flux 
level were less than 1 percent. The transmittance absorptance product 
is included for completeness. The errors in UL resulting from the use 
of equation (1) vary from 5 to 27 percent for the range of collector 
designs analyzed. It can also be seen in Table 1 that variations in hw 

have only a minor effect on FR . 

Predictions of the useful energy delivered by the four collectors are 
presented in a commonly used format (i.e., qu/I as a function of (Tjn 

— Ta)/I) in Figs. 2 and 3. In the case of the collector with two covers 
and a selectively absorbing coating (upper curves, Fig. 2), the method 
of evaluating hw has little effect on the predicted energy collection 
rate, but the results shown in Fig. 2 for the case of a nonselective ab
sorber show greater sensitivity to hw. In Fig. 3, the results for single-
cover collectors indicate a much greater sensitivity to hw than did the 
results for two-cover collectors. 

In normal use, flat plate collectors are forced to operate for a sig
nificant fraction of the time at relatively low incident solar flux levels, 
which corresponds to large abscissa values in Figs. 2 and 3. For these 
operating conditions it is seen that the errors in predicted performance 
are greatest. 

To further illustrate this point, calculations were made of the rate 
of energy collection throughout a mild January day in Minneapolis, 
Minn. (T0 = 0 °C, U„ = 4.5 m/s) using a south facing, single-cover 

Table 1 Values of UL and FR for wind speed of 4.5 
m/s 

Inappropriate 
Appropriate hw hw 

UL,W/ DLTW 
Collector* FR m2-°C FR m2-°C 

Two covers, selective coating 0.929 2.95 0.927 3.11 
(T^ = 85°C, Ta = 20°C) 

One cover, selective coating 0.908 3.89 0.899 4.35 
(Tin = 85°C, Ta = 20°C) 

Two covers, nonselective coat- 0.897 4.51 0.885 5.07 
ing (T i n = 85°C, T? = 20°C) 

One cover, nonselective coating 0.863 6.04 0.833 7.64 
(Tin = 50°C, Ta = 0°C) 

* (ra)e is 0.765 for two covers and 0.849 for one cover 

DOUBLE-COVER COLLECTORS 
Appropriate hw 

Inappropriate hw 

Selective Absorber 

Nonselective 
Absorber 

[ ( T i n - T a ) / I ] xlOO, °C- m 2 /W 

Fig. 2 Predicted performance for double-cover solar collectors 

SINGLE-COVER COLLECTORS 
Appropriate hw 
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Fig. 3 Predicted performance for single-cover solar collectors 
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SOLAR TIME 

3 4 5 

Fig. 4 Daily variation of the incident and collected solar flux for a single-
cover, nonsefectively coated solar collector (/"i„ = 50 °C, T„ = 0 °C) 

Table 2 Effect of wind speed on hw, UL and FR for a 
collector having a single cover and a nonselective 

absorber coating 

IU m/s 

2.25 
4.50 
6.75 

hw, W/m2-°C 

4.2 
5.9 
7.3 

L/L,W/m2-°C 

5.70 
6.04 
6.25 

FR 

0.870 
0.863 
0.859 
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collector with a nonselective absorber coating operating at a fluid inlet 
temperature of 50 °C. The Liu-Jordan model [7] was used to predict 
the instantaneous values of the direct, diffuse and ground reflected 
solar flux incident on the collector, (the ground reflectance was taken 
as 0.2). By assuming quasi-steady state conditions, the instantaneous 
rate at which useful energy is collected can be calculated from a 
modified form of equation (4) 

qu = FR(ra)e[KDID + KdId + K,.Ir] - FRUL(Tin - Ta) (5) 

where the subscripts D, d and r refer to the direct, diffuse and ground 
reflected solar radiation respectively. The K coefficients are angle of 
incidence modifiers which account for the decrease in the effective 
transmittance absorptance product as the angle of incidence increases. 
In the present study, it was assumed that the angle of incidence cor
rection for (T<x)e is similar to that for the transmission of glass and 
the K values were evaluated using the procedure recommended by 
ASHRAE [81. 

The daily variation of the incident solar flux on the collector and 
the corresponding collection rates are presented in Fig. 4. Marked 
differences exist in the collector output predictions (lower two curves, 
Fig. 4). Using the inappropriate value of hw, as calculated from 
equation (1), results in a shorter collection period plus substantially 
lower collection rates during the operating period. Overall, this leads 
to a 37 percent underprediction of the energy delivered for the entire 
day. 

The effect of wind speed on collector performance was checked by 
analyzing the single-cover, nonselective absorber configuration at 

A Parametric Study of Prandtl 
Number and Diameter Ratio 
Effects on Natural Convection 
Heat Transfer in Horizontal 
Cylindrical Annuli 

T. H. Kuehn1 and R. J. Goldstein2 

Nomenclature 
D = cylinder diameter 
g = gravitational acceleration 
h = local heat transfer coefficient on either inner or outer cylinder, 

ql(Ti - T0) 
k = fluid thermal conductivity 
feeq = local equivalent conductivity on either inner or outer cylinder, 

<?/<?cond 
L = annular gap, {D0 — D;)/2 
NUD; = local inner cylinder Nusselt number, hiDi/k 
NUD„ = local outer cylinder Nusselt number, h0D0/k 
Pr = Prandtl number 
q = heat transfer per unit area, h(Ti — T0) 
Q = heat transfer per unit length, fei7rD,(T; - T0), h0nD0(Ti -

To) 
Rao; = inner cylinder Rayleigh number, g/lDj3(T; - T0)/va 
KaD0 = outer cylinder Rayleigh number, g/3D0

3(T; - T0)/va 
R&L = gap Rayleigh number, gf3L3(Ti - T0)lva 
T = temperature 
U = radial velocity 
u = dimensionless radial velocity, UL/a 
V = angular velocity 
v = dimensionless angular velocity, VL/a 
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additional wind speeds of 2.25 and 6.75 m/s. The results are presented 
in Table 2. Increasing the wind speed by a factor of three increases 
the hw by a factor of the square-root of three, as prescribed by equa
tion (2). This in turn causes a ten percent increase in Ui and only a 
1.3 percent decrease in FR. 

Conclusion 
Based on the foregoing illustrative examples, it can be concluded 

that it is of benefit to evaluate the wind-related heat transfer coeffi
cient, hw, using equation (2). 
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a = thermal diffusivity 
/3 = thermal coefficient of volumetric expansion 
d = angle, top of cylinder 0 deg, bottom 180 deg 
v = kinematic viscosity 

Subscripts 

cond = conduction 
conv = convection 
; = inner cylinder 
o = outer cylinder 

Superscript 

— = mean value 

Introduction 
Natural convection in horizontal annuli continues to receive at

tention because of the interesting flow patterns that develop and the 
numerous heat transfer applications. Although correlations for the 
mean heat transfer coefficient have been presented [1-3], no para
metric studies have been reported that investigate the effect of the 
Prandtl number and diameter ratio over the ranges needed for many 
applications. In the present study, the Prandtl number and diameter 
ratio are each varied over several orders of magnitude (0.001 < Pr < 
1000,1.0 < D0/Di < «>) to determine their influence on the natural 
convection flow and local and mean heat transfer in a horizontal an-
nulus. 

Numerical Procedure 
An explicit successive overrelaxation finite difference technique 

is employed to solve the governing equations for steady laminar flow 
in two dimensions between two horizontal, concentric, isothermal 
cylinders. The method follows the basic procedure given in [4]. Since 
some coefficients become negative at small values of Pr or in regions 
of high velocity, which leads to instability, a hybrid technique has been 
introduced which changes from central to upwind differencing in 
regions where the coefficients become negative. This technique allows 
solutions to be obtained at very low values of Pr and very large D0/A'-
An outline of this procedure is given in [5]. 

Several grid spacings are used depending on D0/Di and Pr. The 
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collector with a nonselective absorber coating operating at a fluid inlet 
temperature of 50 °C. The Liu-Jordan model [7] was used to predict 
the instantaneous values of the direct, diffuse and ground reflected 
solar flux incident on the collector, (the ground reflectance was taken 
as 0.2). By assuming quasi-steady state conditions, the instantaneous 
rate at which useful energy is collected can be calculated from a 
modified form of equation (4) 

qu = FR(ra)e[KDID + KdId + K,.Ir] - FRUL(Tin - Ta) (5) 

where the subscripts D, d and r refer to the direct, diffuse and ground 
reflected solar radiation respectively. The K coefficients are angle of 
incidence modifiers which account for the decrease in the effective 
transmittance absorptance product as the angle of incidence increases. 
In the present study, it was assumed that the angle of incidence cor
rection for (T<x)e is similar to that for the transmission of glass and 
the K values were evaluated using the procedure recommended by 
ASHRAE [81. 

The daily variation of the incident solar flux on the collector and 
the corresponding collection rates are presented in Fig. 4. Marked 
differences exist in the collector output predictions (lower two curves, 
Fig. 4). Using the inappropriate value of hw, as calculated from 
equation (1), results in a shorter collection period plus substantially 
lower collection rates during the operating period. Overall, this leads 
to a 37 percent underprediction of the energy delivered for the entire 
day. 

The effect of wind speed on collector performance was checked by 
analyzing the single-cover, nonselective absorber configuration at 
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additional wind speeds of 2.25 and 6.75 m/s. The results are presented 
in Table 2. Increasing the wind speed by a factor of three increases 
the hw by a factor of the square-root of three, as prescribed by equa
tion (2). This in turn causes a ten percent increase in Ui and only a 
1.3 percent decrease in FR. 

Conclusion 
Based on the foregoing illustrative examples, it can be concluded 

that it is of benefit to evaluate the wind-related heat transfer coeffi
cient, hw, using equation (2). 
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Natural convection in horizontal annuli continues to receive at

tention because of the interesting flow patterns that develop and the 
numerous heat transfer applications. Although correlations for the 
mean heat transfer coefficient have been presented [1-3], no para
metric studies have been reported that investigate the effect of the 
Prandtl number and diameter ratio over the ranges needed for many 
applications. In the present study, the Prandtl number and diameter 
ratio are each varied over several orders of magnitude (0.001 < Pr < 
1000,1.0 < D0/Di < «>) to determine their influence on the natural 
convection flow and local and mean heat transfer in a horizontal an-
nulus. 

Numerical Procedure 
An explicit successive overrelaxation finite difference technique 

is employed to solve the governing equations for steady laminar flow 
in two dimensions between two horizontal, concentric, isothermal 
cylinders. The method follows the basic procedure given in [4]. Since 
some coefficients become negative at small values of Pr or in regions 
of high velocity, which leads to instability, a hybrid technique has been 
introduced which changes from central to upwind differencing in 
regions where the coefficients become negative. This technique allows 
solutions to be obtained at very low values of Pr and very large D0/A'-
An outline of this procedure is given in [5]. 
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Fig. 1 Effect of Prandtl number on local heat transfer coefficients, Ra t = 
104, D0ID, = 2.6 

basic grid has a radial spacing of L/20 near the cylinders and L/10 in 
the interior with a uniform angular spacing of 10 deg. At large Ray-
leigh numbers the radial spacing was reduced to L/80 near the walls 
and the angular spacing decreased to 2.5 deg in the plume. 

Results and Discussion 
Effect of Prandtl Number. Fifteen solutions were obtained at 

a constant Rayleigh number and diameter ratio (Ra/, = 104, D0/Di 
= 2.6) with 0.001 < Pr < 1000. The flow and heat transfer were ana
lyzed between the limits of conduction at the lowest Pr and fully de
veloped boundary layer flow at the highest Pr. 

As the Prandtl number decreases below 1.0 and center of rotation 
moves down without the appearance of multiple eddies and the di-
mensionless velocities become similar with their magnitudes pro
portional to (Ra Pr)1 / 2 . As the Prandtl number increases above 1.0 
the dimensionless velocities become invariant. 

The temperature distribution approaches the pure conduction limit 
as Pr —>- 0 and is very close to that limit when Pr = 0.001. The tem
perature profiles are almost independent of Prandtl number when 
Pr > 1.0 with thermal boundary layers adjacent to both cylinders. 

The local heat transfer coefficients on the two cylinders are shown 
in Fig. 1 for the entire range of Prandtl number investigated. The 
distribution on the inner cylinder at large Prandtl number resembles 
that on a single horizontal cylinder in boundary layer natural con
vection flow. The local maximum occurs at the stagnation point (8 = 
180 deg) with the minimum at the plume separation point (6 = 0 deg). 
The distribution becomes more uniform and approaches the con
duction limit as Pr -» 0. The heat transfer coefficients do not change 
appreciably when Pr > 1 in contrast to external natural convection 
boundary layer flows where a variation of 20 percent can exist between 
Pr = 1.0andPr = 1000[6]. 

The local heat transfer on the outer cylinder is governed primarily 
by the impinging thermal plume near 8 = 0 at large values of Prandtl 
number. The plume weakens as Pr —• 0 which results in coefficients 
that are more uniform and close to the conduction limit. The Prandtl 
number has virtually no effect on heat transfer in the region, 80 deg 
< 8 < 130 deg, until the conduction limit is approached. 

Effect of Diameter Ratio. The diameter ratio, D0/Di, was in
creased from a value near unity to as large a value as would still give 
convergence. The Prandtl number remained fixed at Pr = 0.7. Values 
for Rao,- were set at 10°, 102 or 104. These solutions simulate natural 
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Fig. 2 Effect of diameter ratio on local heat transfer coefficients, Rao, = 102, 
Pr = 0.7 

convection around a cylinder of fixed size and temperature as the 
outer cylinder diameter is increased. 

The flow circulation is very weak with the center of rotation near 
8 = 90 deg when D0/Di r^ 1.0. The temperature distribution and heat 
transfer are identical to that of pure conduction. As the diameter ratio 
increases the flow becomes stronger and the center of rotation moves 
above 90 deg. This increased flow changes the temperature field and 
local heat transfer coefficients but the mean equivalent conductivity 
remains close to 1.0. Further increases in diameter ratio result in in
creased velocities which create thermal boundary layers on both 
cylinders, and the mean heat transfer increases above that for pure 
conduction. As the diameter ratio becomes very large, the flow and 
heat transfer from the inner cylinder approach the values obtained 
with natural convection about a single horizontal cylinder in an infi
nite fluid medium [5]. 

Local heat transfer coefficients for both cylinders are shown in Fig. 
2 as a function of diameter ratio for Rao,. = 102. The curves for DJDi 
= 3 are essentially that for pure conduction. The transition from 
conduction occurs near D0/Di = 5. The local heat transfer coefficients 
on the inner cylinder approach the free cylinder distribution as D„/Z); 
- • <=°. In contrast to the inner cylinder, the local heat transfer coeffi
cients on the outer cylinder do not approach a limiting value but 
continuously increase near the top (8 =* 0 deg) and decrease near the 
bottom (8 at 180 deg) as the diameter ratio increases. 

Mean heat transfer coefficients are plotted in Fig. 3 as a function 
of diameter ratio for the three values of R a ^ investigated. The shaded 
area corresponds to a region of unsteady flow delineated by Powe, 
Carley and Bishop [7]. The present numerical method should not give 
valid results in this region. Heat transfer is by conduction alone at 
small diameter ratios. The conduction curve is also the lower bound 
of the heat transfer at any specific diameter ratio. The transition 
between conduction and convection, which is also the condition of the 
minimum mean heat transfer coefficient at any given value of Ra^ , 
occurs when Ra/, =̂  103. The mean Nusselt number should asymp
totically approach the free cylinder value shown on the right-hand 
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(CONCENTRIC CYLINDERS) 

Fig. 3 Influence of diameter ratio on the mean heat transfer coefficient, Pr 
= 0.7. Shaded area is region of unsteady flow [7]. 

side of Fig. 3 as D0/Df -* <». Curves from two heat transfer correlations 
are shown for comparison. 

Mean Heat Transfer Correlation 
Mean heat transfer correlations have been developed for natural 

convection between horizontal cylinders using a double boundary 
layer concept [2,3]. These correlations are general in scope but require 
an iterative procedure to solve for the mean temperature between the 
boundary layers. 

The flow recirculation in a cavity causes the heat transfer to in
crease over what the double boundary layer model predicts. This in
crease has been incorporated into the model by basing the Rayleigh 
numbers, Rac, and Razj„, on the total temperature difference between 
the cylinders rather than on the temperature difference across the 
respective boundary layers. This reduces the complexity of the cor
relation by eliminating the need for iteration. The Prandtl number 
does not affect the local heat transfer in the outer cylinder boundary 
layer region nearly as much as for the inner cylinder, so the Prandtl 
number variation was removed from the correlation for the outer 
cylinder boundary layer. 

The resulting correlation valid for laminar flow is 
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When Pr = 0.7, this correlation fits the numerical results at various 
diameter ratios better than the correlation given in [3] as shown in 
Fig. 3. The relative minimum heat transfer at a given value of Rac, 
is predicted fairly well, which is important in many engineering ap
plications. The standard deviation between the present correlation 
and the fifteen numerical solutions over the range of Prandtl number 
investigated is 8.6 percent with the maximum deviation of 13 percent 
occurring near Pr = 0.02. Although this does not fit the solutions at 
various Prandtl numbers as well as the correlation given in [3], 
equation (1) is recommended when only approximate results are de
sired. 
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The Experimental Measurement 
of Natural Convection Heat 
Transfer in Triangular 
Enclosures Heated or Cooled 
from Below 

R. D. Flack1 

Nomenclature 
Gr" = Grashof number g/3(TH - Tc)H

3/vm
2 

hu = local heat transfer coefficient along upper-side wall 
hu = average heat transfer coefficient along upper-side wall 
h = thermal conductivity of air 
£_= distance between upper and lower walls at a given x 
Nuy = overall Nusselt number, hjjH/km 

q" = heat transfer per unit area (W/m2) 
Ra = Rayleigh number, Gr Prm 

Tm = mean temperature, (TH + Tc)/2 
/3 = volumetric coefficient of expansion, 1/T 
v = kinematic viscosity 

Subscripts 

C,H = conditions at the cold and hot walls 
CL = evaluated at enclosure centerline 
U,L = conditions at the upper and lower walls 

I n t r o d u c t i o n 
Previously, many investigators studied free convection in various 

two-dimensional enclosures; the literature is reviewed in reference 
[1]. Recently, Flack, et al. [1, 2] studied the heat transfer rates and flow 
patterns in triangular geometries which were heated and cooled on 
opposing sides and which had adiabatic floors. These represented attic 
spaces with solar collectors on one side. However, the results of these 
studies cannot be readily adapted to conventional attic spaces, i.e., 
cool roof and heated floor or vice versa. In this paper heat transfer in 
triangular enclosures was experimentally studied. The geometries 
were heated or cooled from the bottom. The present geometry, thus, 
represents the conventional attic space of a house during winter or 
summer conditions, respectively. 

Apparatus, Procedure, and Analysis 
The air-filled enclosure was very similar to that used in [1] and 
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Fig. 3 Influence of diameter ratio on the mean heat transfer coefficient, Pr 
= 0.7. Shaded area is region of unsteady flow [7]. 
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When Pr = 0.7, this correlation fits the numerical results at various 
diameter ratios better than the correlation given in [3] as shown in 
Fig. 3. The relative minimum heat transfer at a given value of Rac, 
is predicted fairly well, which is important in many engineering ap
plications. The standard deviation between the present correlation 
and the fifteen numerical solutions over the range of Prandtl number 
investigated is 8.6 percent with the maximum deviation of 13 percent 
occurring near Pr = 0.02. Although this does not fit the solutions at 
various Prandtl numbers as well as the correlation given in [3], 
equation (1) is recommended when only approximate results are de
sired. 
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The Experimental Measurement 
of Natural Convection Heat 
Transfer in Triangular 
Enclosures Heated or Cooled 
from Below 

R. D. Flack1 

Nomenclature 
Gr" = Grashof number g/3(TH - Tc)H

3/vm
2 

hu = local heat transfer coefficient along upper-side wall 
hu = average heat transfer coefficient along upper-side wall 
h = thermal conductivity of air 
£_= distance between upper and lower walls at a given x 
Nuy = overall Nusselt number, hjjH/km 

q" = heat transfer per unit area (W/m2) 
Ra = Rayleigh number, Gr Prm 

Tm = mean temperature, (TH + Tc)/2 
/3 = volumetric coefficient of expansion, 1/T 
v = kinematic viscosity 

Subscripts 

C,H = conditions at the cold and hot walls 
CL = evaluated at enclosure centerline 
U,L = conditions at the upper and lower walls 

I n t r o d u c t i o n 
Previously, many investigators studied free convection in various 

two-dimensional enclosures; the literature is reviewed in reference 
[1]. Recently, Flack, et al. [1, 2] studied the heat transfer rates and flow 
patterns in triangular geometries which were heated and cooled on 
opposing sides and which had adiabatic floors. These represented attic 
spaces with solar collectors on one side. However, the results of these 
studies cannot be readily adapted to conventional attic spaces, i.e., 
cool roof and heated floor or vice versa. In this paper heat transfer in 
triangular enclosures was experimentally studied. The geometries 
were heated or cooled from the bottom. The present geometry, thus, 
represents the conventional attic space of a house during winter or 
summer conditions, respectively. 

Apparatus, Procedure, and Analysis 
The air-filled enclosure was very similar to that used in [1] and 
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consisted of two constant temperature water tanks for the upper-side 
walls and another constant temperature water tank for the lower 
boundary, as shown in Fig. 1(a). The ideal enclosure is represented 
by Fig. 1(6). 

The upper tanks were connected and water was circulated through 
the tanks and a reservoir by a centrifugal pump. Water was also cir
culated through the bottom tank and a second reservoir. The two 
reservoirs were maintained at constant temperature. One was heated 
with heating coils, while the second was maintained at room tem
perature or was filled with ice. When the lower wall was heated, the 
cool reservoir was maintained at room temperature. The temperatures 
of the walls were measured with copper constantan thermocouples 
and were uniform within 0.5°C. 

The same three geometries as studied in [1] were examined here. 
Also, the Wollaston prism schlieren interferometer used by Flack, et 
al. [1] was utilized to make the heat transfer measurements. 

When the lower wall was heated, the upper-side walls were main
tained at approximately 20° C. The temperature of the lower wall was 
then increased from 20° C by 3 to 4°C increments. Eventually, the flow 
became turbulent due to the large temperature differences. The 
turbulence became apparent by the randomly fluctuating fringe 
patterns. Once the flow became turbulent, the tests were termi
nated. 

When the upper walls were heated, two sets of tests were run. First, 
the lower boundary was maintained at approximately 20°C and sec
ond, the lower boundary was maintained at approximately 0°C. Four 
temperatures were used for the upper walls: approximately 35, 50, 65 
and 80° C. When the upper walls were heated, the flow remained stable 
and laminar for all cases considered. 

Analysis of the resulting interferograms has been thoroughly de
scribed in [1]. For the total heat transfer rates the uncertainty was 
typically 8 percent. Also, at worst, 6 percent of the measured heat 
transfer was lost through the glass end plates. 

To complement the heat transfer data, approximate flow patterns 
were determined for a few of the cases as in [2]. The chamber was 
uniformly illuminated and the motions of particles were qualitatively 
observed. Also, the velocities at a few selected points were measured 
using the laser velocimeter described in reference [2]. The velocity 
measurements were made primarily to aid in the general under
standing of the structure and direction of the flow. 

In this paper overall (or average) heat transfer data are reduced and 
presented. The present data were reduced similarly to data for rec
tangular enclosures [3,4], The correlating parameters are defined in 
the nomenclature. The temperature profiles along the apparatus 
centerline were also found in the present study. 

Results 
Cooled from Below. The first condition to be discussed is when 

the base was cooled and the upper-side walls were heated. For these 
conditions the flow was always stable and laminar. Typical local heat 
flux data along one upper-side wall are shown in Fig. 2 for one ge
ometry (0i = 45 deg) and Gr = 2.84 X 106. The experimental data are 
compared to the heat fluxes calculated for simple one-dimensional 
heat transfer i.e., qmc" = km{TH - TC)H, where / is the distance 
between the upper and lower walls at any x. For small values of x/L 
the experimental data agree with the simple theory. For 0.1 < x/L < 
0.3 the experimental data are typically 30 percent higher than for 
simple conduction. For 0.5 < x/L the experimental data are nearly 
zero and lower than for simple conduction. 

Also shown in Fig. 2 is the qualitative flow pattern for the same 
conditions. It should be noted that the maximum fluid velocities were 
low (on the order of 10 percent) as compared to those measured in 
reference [2] for the two upper-side walls heated and cooled. The 
measured heat transfer rates should not be significantly higher than 
for simple conduction for such low velocities. This fact is born out in 
Fig. 2 as the measured rates are, at a maximum, 40 percent higher. For 
convection dominated flows in enclosures the heat transfer rates are 
typically 200-1000 percent higher [4]. Similar results were found for 
other geometries and conditions and results are not presented for the 
sake of brevity. 

HOSE-, /-0.64cmOPTICAL 
/ / G L A S S END PLATE 

Fig. 1(a) Enclosure schematic 

Fig. 1(6) Idealized enclosure 

Fig. 1 Triangular enclosure apparatus 
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Fig. 2 Typical local heat flux distributions 
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Fig. 3 Typical nondimensionalized centerline temperature profiles 

Temperature profiles at the centerline of the enclosure were also 
found. Typical nondimensionalized results are presented in Fig. 3 for 
six conditions. All results are nearly identical as shown, regardless of 
the Grashof number or the geometry. For values of y/H greater than 
approximately 0.6 the centerline temperature is essentially equal to 
Ty, which indicates why very low heat transfer rates were measured 
near the apex; very little driving potential is present near the top. 

Reduced heat transfer data is presented in Fig. 4. Included in Fig. 
4 are the correlated data presented in reference [1] (with converted 
parameters) for triangular enclosures with heated and cooled 
upper-side walls, calculated simple one-dimensional conduction rates, 
and data for cooled tops/heated bottom (to be discussed in the next 
subsection). In reference [1] the authors based the nondimensional 
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T a b l e 1 T r a n s i t i o n Grashof n u m b e r s T a b l e 2 C o n s t a n t s in e q u a t i o n (1) 
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Fig. 4 Nusselt number correlations for triangular enclosures 
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Fig. 5 Comparison of triangular enclosure data (heated from below) to 
horizontal rectangular enclosure data [3] 

parameters on L and included a cosine correction term often used for 
inclined plates. However, the present geometry is more representative 
of an air layer between horizontal flat plates than it is of flow over 
inclined plates. For this reason the nondimensional parameters are 
based on H and the cosine correction is not included in this paper. 

As shown in Fig. 4, very little dependence of the Nusselt number 
on Grashof number is found, regardless of geometry. These data are 
compared to the total heat transfer rates calculated for simple one-
dimensional conduction. The experimental data are in good agree
ment with the simple conduction heat transfer and maximum dif
ferences are only 10 percent and due primarily to measurement 
uncertainties. 

Heated from Below. The second condition to be discussed is for 
a heated base and cooled upper-side walls. For these conditions the 
flow was initially laminar, but as the Grashof number was increased, 
the flow became turbulent. These transition Grashof numbers are 
listed in Table 1 for the three geometries considered. __ 

In Fig. 2 typical local heat flux data are presented (0i = 45 deg, Gr 
= 6.25 X 105) for the bottom wall. The data are again compared to 
fluxes calculated for simple one-dimensional conduction heat transfer. 
For small values of x/W the experimental data again agree well with 
the simple theory. For 0.05 < x/W < 0.95 the data are typically 500 
percent higher than for simple conduction. This indicates considerable 
convection occurred. 

Qualitative center plane axial flow patterns are also shown in Fig. 
2 for the same conditions. Four Bernard cells were present while 
laminar flow existed. Similar flow patterns were observed for the other 
geometries and Grashof numbers tested here. 

Nondimensionalized centerline temperature profiles are presented 
in Fig. 3. Again results are nearly the same regardless of geometry or 
Grashof number. Large temperature gradients are present near the 
top and bottom of the enclosure. For 0.2 ^ y/H < 0.8 the temperature 
is nearly constant and equal to Tm. 

0.289 
0.500 
0.865 

30 deg 
45 deg 
60 deg 

0.22 
0.19 
0.15 

0.30 
0.30 
0.30 

Finally, reduced data are presented in Fig. 4. For this thermal 
condition, the reduced data are a function of both geometry and 
Grashof number. The data are curve fitted with an equation of the 
form 

Nuy = Ci Gr°2 (1) 

For the geometries and ranges in Grashof numbers studied here the 
values of Ci and C2 are summarized in Table 2 and these lines are 
shown in Fig. 4. 

In Fig. 4, the present Nusselt number data are, in general, higher 
than the data presented in reference [1], Also, the dependence of Nuu 
on 0i for the present data is the opposite of what it was in [1], Namely, 
presently for a given value of Gr, Nut/ increases with decreasing 8i, 
while in [1] the Nusselt number decreased. This change in trend is due 
to the fact that for the present work as 6\ decreases the average dis
tance between the heated (bottom) and cooled (upper) walls de
creases. In reference [1] as 8i decreased, the average distance between 
the heated (one upper-side) wall and the cooled (the other upper-side) 
wall increased. Thus, the trends of the changing distance between the 
heated and cooled walls with #i are opposite for the present work and 
that in [1], which result in opposite trends in the reduced data. 

It is interesting to note that the present data for di = 60 deg corre
sponds well with data for 6i = 60 deg in reference [1] as shown in Fig. 
4. For 6, - 60 deg the average distance between the two upper-side 
walls is the same as between the upper walls and the bottom, since the 
triangle is equilateral. The flow patterns are significantly different 
for the two geometries, however. Bernard cells existed for the present 
data, but were absent in [1]. Thus, the similarity between the two sets 
of data is encouraging, but generalizing the similarity as a function 
of the average distance between the heated and cooled surface is not 
possible without further studies for larger value of 8\. 

Data were also correlated as in [1], but is not presented for the sake 
of brevity. Different constants were found for equation (1), but they 
were still dependent on d\. 

In Fig. 5 the present triangular enclosure data are compared to 
horizontal rectangular enclosure data (heated from below) [3]. Ozoe, 
et al. [3] tested several aspect ratios with silicone oil for Rayleigh 
numbers from 3 X 103 to 106. The present data (Ra > 7.5 X 104) are 
in good qualitative agreement with the data in reference [3]. The re
sults for the rectangular enclosures are seen to be minimally depen
dent on the aspect ratio, although it appears that data for small aspect 
ratios (H/W = 0.25) are slightly higher than for data with H/W = 1.00 
(by approximately 15 percent a tRa = 104). The present data follow 
the same trend only the the dependence of Nuj; on H/W is stronger 
for the present data due the different geometry (approximately 45 
percent variation in Ci). 
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Turbulent Natural Convection 
at High Prandtl Numbers 

E. Ruckenstein1 and J. D. Felake1 

Nomenclature 
cp = specific heat 
g = gravitational acceleration 
h = heat transfer coefficient 
k = thermal conductivity 
£ = characteristic length 
(j0 = heat flux at the wall 
T = mean temperature 
T0, T„ = wall and ambient temperatures 
T" = fluctuation of temperature 
u,u = x and y components of mean velocity 
u', v' = fluctuations of the x and y velocity components 
u* = scaling velocity 
x = coordinate along the plate 
y = distance from the surface 
a = thermal diffusivity 
/3 = coefficient of thermal expansion 
eh = eddy diffusivity for heat 
v = kinematic viscosity 
p = density of the fluid 
T 0 = wall shear stress 
Pr = Prandtl number 
Nu^ = Nusselt number 
Gr*, Gr = Grashof numbers defined by equations (22) and (24) 

Introduction 
The phenomenon of turbulent natural convection near a heated 

vertical surface has been the subject of many experimental, theoret
ical, and computational studies. The theoretical and computational 
studies have employed a variety of approaches. The first analytical 
study was made by Eckert and Jackson [1] using the integral tech
nique with temperature and velocity profiles appropriate to the 
natural convective flow. Bayley [2] and Kato, et al. [3] postulated the 
variations of the eddy diffusivities with distance from the plate and 
then performed integrations across the boundary layer. Noto and 
Matsumoto [4] used the concept of local similarity and the eddy dif
fusivity expression of Kato, et al. [3] to numerically integrate the re
sulting one dimensional equation. Cebeci and Khattab [5] carried out 
a "similarity" transformation, retained the nonsimilar terms and 
assumed distributions for the eddy diffusivity for momentum and for 
the turbulent Prandtl number in performing their numerical com
putations. George and Capp [6] used scaling arguments and the 
method of matched asymptotic expansions, to derive analytical ex
pressions for the velocity and temperature distributions in an inter
mediate sublayer as well as asymptotic heat transfer and friction laws. 
The boundary layer equations were directly programmed and nu
merically solved by Mason and Seban [7] using a mixing length model 
for the eddy diffusivity and by Plumb and Kennedy [8] and Lin and 
Churchill [9] using turbulent kinetic energy (K-t) models. 

Predictions for a wide range of Prandtl numbers may be generated 
from these latter numerical techniques. However, physical insight into 
the transport processes may easily be lost in an approach to the 
problem which is purely numerical. Hence, it is desireable to obtain 
analytical results which possess a theoretically sound foundation even 
if such results can only be obtained for limiting cases. For large 
Prandtl numbers, simple analytical expressions for the heat transfer 
coefficient have been derived for various geometries in laminar and 
turbulent forced convection and also in laminar natural convection. 
The goal of our present work is to derive an analytical expression for 
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the heat transfer coefficient for a high Prandtl number fluid in tur
bulent natural convection adjacent to a heated vertical surface. As 
in all the analytical and numerical studies, a turbulence closure model 
is required. We will use the concept of eddy diffusivity and borrow 
a scaling law from forced turbulent convection. 

Governing Equations 
The time-averaged boundary layer equations for the conservation 

of mass, momentum and energy are given under the Boussinesq ap
proximation as 

du du 
— + — = 0 
dx dy 

du • du d 
u \- v — = — 

dx dy dy 

du 
v u v + £/3(T-T„) 

(1) 

(2) 

dT dT 
u 1- v — = 

dx dy 

dT 
•v'T (3) 

d 
• — \a 
dy \ dy 

where the primed variables are fluctuating quantities and the un-
primed are time averaged. The overbar denotes, as usual, the time 
average. 

When the Prandtl number is large, the thermal layer will be much 
thinner than the hydrodynamic layer. In addition, as in laminar 
natural convective flows, the edge of the thermal layer will be much 
closer to the wall than the point of maximum velocity. Therefore, 
within this layer the convective transport of heat and momentum will 
be small compared to the transport by molecular and eddy diffusion. 
Then, from equation (3), the heat flux is seen to be constant across 
the thermal layer and is given by 

dT 
qjpcp = -a — + v'T 

?>y 

By introducing the eddy diffusivity for heat 

•v~7T 

(4) 

eh(y) 
dT/dy 

(5) 

the temperature distribution may be determined by integration to 
be 

T(y) - T„ = -
go 

pCpCt s: dy 

1 + Pr 
eh(y) 

(6) 

For large Prandtl numbers, the integrand in the above expression 
is significantly different from zero only near the surface—where tix/v 
is very small. Outside the thermal layer the integrand is negligible. 
Therefore (T„ - T„) may be determined by letting y -* °° in the above 
expression while retaining for thh the expression valid very near the 
wall. Using this result for (T„ — T„), the Nusselt number may then 
be written as 

Nu<. = <7c> 

(T„ - T„) k 
I r 
e Jo 

dy 

1 + Pr 
th(.y) 

(7) 

where £ is an arbitrary reference length and f/, (y) is the thermal eddy 
diffusivity distribution in the region very close to the wall. 

T h e Eddy Di f fus iv i ty N e a r the Wal l 
The determination of the heat transfer coefficient from equation 

(7) requires first an expression for ej, (y) appropriate to the near wall 
region. The variation of the eddy diffusivity for heat in this region may 
be determined from equation (5) by expanding both v'T and dT/dy 
in Taylor series and then dividing. The value of the correlation itself 
(v'T') is zero at the surface. Its first two derivatives 

dv'T 

dy 

dT' m dv' 
' +T' — 

dy dy 

d V T ' 

dy2 

d2T' du' dT' d V 
• — + 2 + r — -

dy2 dy dy dy2 

(8) 

(9) 
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are also seen to be zero at that point since, from the turbulent conti
nuity equation: 

dx 

dw1 

dz 
••0 

Taking the third derivative and evaluating it a ty : 

equation (10) yields 

dHl/T) 

(10) 

; 0 with the use of 

dy3 

d J T d V 

o dy dy2 (11) 

Hence the expansion for v'V begins with the third order term (just 
as for forced flows [10]) 

y3 + . (12) 
1 IdT' d V 

2 l d y dy2} 

In the expansion for the temperature distribution, (dT/dy)0 = 
-qjk by definition and (d2T/dy2)0 = 0 from equation (3) applied at 
the surface. By differentiating the energy equation and evaluating 
it at the surface it results that (d3T/dy3)0 = (T 0I ap)dT J dx. Hence, 
the expansion for the temperature gradient becomes 

d T , IUX , I1 T»dTA 2J_ 
— = -(qjk) + — - \y2 + • 
dy \£a p. ax / 

(13) 

Again, the results have the same form as for forced flows. 
Substituting equations (12) and (13) into equation (5) and ex

pressing the result in terms of dimensionless variables, the variation 
of the eddy diffusivity near the surface may be written as 

ih/v = yy+s (14) 

in which y is at most a function of the Prandtl number, y+ = yu*/v 
and u* is a scaling velocity. If it is now assumed that the shear velocity 
based on the wall shear stress \/TJP is the appropriate scaling velocity 
in the near wall region, then 

y+ = y^fWph (15) 

and the thermal eddy diffusivity in the natural convective flow then 
has the same form near the wall as it does in forced flows. 

For large Prandtl numbers it is reasonable to assume that y is 
constant. This is equivalent to assuming that the turbulent Prandtl 
number is independent of the molecular Prandtl number. Such an 
approximation, however, has been found acceptable for the prediction 
of heat transfer coefficients for large Prandtl numbers [11]. In the 
computations and comparisons at the end of the note it will be as
sumed that 7 = 6.8 X 10~4, the value indicated by Kato, et al. [3]. 
Derivation of the following results, however, only requires that y be 
independent of y+. 

The Heat Transfer Coefficient 
Using the above distribution for the eddy diffusivity, the temper

ature distribution may then be determined from equation (6) as 

T(y) - T„ = • 

where 

q"-p-\l-en 
pCpCt 3 [2 

(y+p) 

y3 + p3. 

+ \/3 tan" 

( 7 p r ) l / 3 

i (2y ~ P\ + EVj[ 
,pV3 

(16) 

(17) 

The above temperature distribution is of the same form as the con
centration distribution near a wall determined by Lin, et al. [12] in 
their investigation of mass transfer in turbulent forced flows in a tube. 
(They had also taken e ~ y3 near the wall.) 

Using equation (16) in the limit y —- °°, the Nusselt number may 
be determined from equation (7) as 

Nu^: 

2TT 
- (7Pr) 1/3 (18) 

Since the near wall eddy diffusivity expression, equation (14), is valid 
for both forced and natural convection and since the assumption of 
a constant heat flux across the thermal layer is valid in either case at 
large Prandtl numbers, the above expression for the Nusselt number 
applies equally to forced and natural flows alike (as long as the Prandtl 
number is very large). It is only the relationship between the shear 
stress and the characteristic flow velocity which differs. In a forced 
flow the shear stress is related to either the free stream velocity (for 
boundary layer flows) or to the average velocity (for the flow in a pipe) 
and can be determined without consideration of the energy equation. 
For natural convective flows, Eckert and Jackson [1] assumed that 
the dependency of the wall shear stress on the characteristic velocity 
and layer thickness was the same as in forced flows. In the present 
study, however, a shear stress relation need not be assumed. On the 
contrary, a relationship between the shear stress and the heat flux can 
be derived as follows. 

For the large Prandtl number fluids under consideration here, the 
temperature distribution is derived directly from the energy equation 
and expressed in terms of the unknown wall shear stress (equation 
(16)). With this temperature distribution, the shear stress may then 
be determined by integrating the momentum equation, equation (2), 
across the full extent of the flow with the result 

-°= CgP(T-T„)dy-± f 
p Jo dx Jo 

u2 dy (19) 

Far from the leading edge the flow becomes developed and the profiles 
no longer change with distance. In this region the acceleration of the 
fluid is negligible and the momentum equation becomes a simple 
balance between viscous and buoyant forces 

^ = Cgp(T-T„)dy 
p Jo 

(20) 

Then, substituting the temperature distribution from equation (16), 
the shear stress is found to be related to the heat flux by 

To = / 7T U/2 

P \eVsl 

gfi(q0lpcv) 1/2 

(TPr) 1/3 
(21) 

Substituting this into equation (18), the Nusselt number is thereby 
given by 

Nu^ = [ ^ i ) 3 / 4 ( Y P r ) 1 / 6 O r / 1 ' 4 

where 

Gr 
, _gP(q0lpcp)£

i 

The above equation can also be written as 

/3V3 

where 

Nu<> = 

Gre 

2TT 

( 7 p r )2 /9 Q ^ l / 3 

g/3(T0 - T_)*» 

(22) 

(22) 

(23) 

(24) 

Comparison to Numerical Studies 
Using the value for y which Kato, et al. [3] have indicated (7 = 6.8 

X 10~4) the Nusselt number in the limit of large Prandtl numbers 
becomes 

Nu* = 0.164 Pr2 /9Gr r 
1/3 (25) 

where it should be recalled that £ is an arbitrary reference length and 
may, for example, be taken as the length of the plate L or the distance 
from the leading edge x. The above theoretical result may be com
pared directly to the numerical solutions given by Kato, et al. [3] and 
Noto and Matsumoto [4]. However, a meaningful comparison with 
experimental data (such as those of Fujii, et al. [13]) is not possible 
since the fluids used in those experiments have highly variable 
properties. 
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Table 1 Nusselt numbers predicted by equation (27), 
by Kato, et al. [3] and by Noto and Matsumoto [4] 

Pr 

102 

103 

104 

Grx 

108 

1010 

1012 

108 

1010 

1012 

108 

1010 

1012 

Fig. 5 of 
reference [4] 

940 

1560 

2580 

Nux 

Present 
equation (27) 

211 
980 

4551 

352 
1635 
7591 

588 
2728 

12662 

Fig. 4 of 
reference 

[3] 

. 200 
1050 
5450 

345 
1650 
8400 

570 
2800 

13700 

In Table 1 the Nusselt numbers predicted by equation (25) are 
compared with the numerical results presented in Fig. 4 of Kato, et 
al. [3] and also with the numerical results presented in Fig. 5 of Noto 
and Matsumoto [4] (available only for Gr* = 1010). The results of the 
present closed form theoretical solution are seen to be in excellent 
agreement with the two numerical studies. 
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Mixed Convection about a 
Vertical Surface in Cross-Flow: 
a Similarity Solution 

R. Eichhorn1 and M. M. Hasan2 

-Nomenclature. 
g = gravitational acceleration 
h = heat transfer coefficient 
Grz = Grashof Number,g/31Tw - T„\z3/v 
Nux = Nusselt number, hx/k 
Re* = Reynolds number, Ux/v; U = u\xm 

T = Temperature, Tw - T„ = Nzn 

u,v,w = velocities in (x, y, z) directions, respectively 
x,y, z = coordinate system 
7 = angle of wedge vertex to vertical 
£*> £z = dimensionless coordinates 

I = fc/& 
<t>, ^ = stream functions 

Introduction 
There has been relatively little work published on problems in 

which buoyancy acts along a surface in a direction that makes an angle 
with the direction of a forced flow [1-5]. The present paper presents 
an analytical study of a combined forced and free convection 
boundary layer problem with the two flows perpendicular to each 
other. The problem is formulated for flow over a wedge. Numerical 
computations were made for a forced flow arising from a two-di
mensional stagnation line and a free convection flow arising from a 
surface temperature that varies linearly with the vertical coordinate. 
Results are presented for Pr = 0.7 and 6 over a range that varies from 
forced flow dominant to free convection dominant. 
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Analysis 
Consider a wedge of opening angle 7rj8 whose vertex lies in a vertical 

plane and makes an angle y with the vertical coordinate. We assume 
a Falkner-Skan type of forced flow over the surface of the wedge and 
a free convection flow in the vertical direction. The equations of 
motion are relatively simple and. admit a similarity solution where 
either y = 0 or 7r/2, so our attention will be restricted to these two 
cases. Figure 1 shows the two flows considered. In each case the * 
coordinate is measured along the wedge from the vertex in the di
rection in which the forced flow occurs. The y coordinate is normal 
to the surface. The wall temperature is allowed to vary only in the 
vertical direction: i.e., in the z direction in case a (7 = 0) and in the 
x direction in case b (7 = 7r/2). 

The case 7 = ir/2 has been considered by Sparrow, et al. [6] for 
uniform wall temperature and uniform wall heat flux distributions 
03 = 2/3 and 3/4, respectively) and by Gunness and Gebhart [7] who 
also included the normal pressure gradient effect. 

The boundary layer equations for the case 7 = 7r/2 are given in [6] 
and [7] withg* of [6] replaced by gsin (7T/3/2). For the case 7 = 0, they 
are given by 

du du dw 
— + — + — = 0 
dx dy dz 

du du du r.dU d2u 
u 1- v h w — = u 1- v—-

dx dy dz dx dy1 

dw dw dw d2w nlFwl m % u — + y — +w — = v—T + gfi(T-T«,) 
dx dy dz dy2 

dT dT dT d2T 
u 1- v 1- w — = a — -

dx dy dz dy2 

The boundary conditions for equations (1) to (4) are 

(1) 

(2) 

(3) 

(4) 

(5) 
u = v = w = 0, T = Tw a t y = 0 

u — U, w — 0, T — T„ as y — » 

For the 7 = 0 case, two stream functions ^ and cj> may be defined 
to cope with the three dimensional flow [8] 

d\j/ 
(6) u = — , ( 

dy dx 

The following substitutions transform the (x, y, 2) coordinates to (£*, 

d<f> , d</> 
— and w = — 
dz 3y 
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Table 1 Nusselt numbers predicted by equation (27), 
by Kato, et al. [3] and by Noto and Matsumoto [4] 
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108 
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1012 
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1012 
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1010 
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Fig. 5 of 
reference [4] 
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1560 
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Nux 

Present 
equation (27) 
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352 
1635 
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12662 

Fig. 4 of 
reference 

[3] 

. 200 
1050 
5450 

345 
1650 
8400 

570 
2800 

13700 

In Table 1 the Nusselt numbers predicted by equation (25) are 
compared with the numerical results presented in Fig. 4 of Kato, et 
al. [3] and also with the numerical results presented in Fig. 5 of Noto 
and Matsumoto [4] (available only for Gr* = 1010). The results of the 
present closed form theoretical solution are seen to be in excellent 
agreement with the two numerical studies. 
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u,v,w = velocities in (x, y, z) directions, respectively 
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Introduction 
There has been relatively little work published on problems in 

which buoyancy acts along a surface in a direction that makes an angle 
with the direction of a forced flow [1-5]. The present paper presents 
an analytical study of a combined forced and free convection 
boundary layer problem with the two flows perpendicular to each 
other. The problem is formulated for flow over a wedge. Numerical 
computations were made for a forced flow arising from a two-di
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Analysis 
Consider a wedge of opening angle 7rj8 whose vertex lies in a vertical 

plane and makes an angle y with the vertical coordinate. We assume 
a Falkner-Skan type of forced flow over the surface of the wedge and 
a free convection flow in the vertical direction. The equations of 
motion are relatively simple and. admit a similarity solution where 
either y = 0 or 7r/2, so our attention will be restricted to these two 
cases. Figure 1 shows the two flows considered. In each case the * 
coordinate is measured along the wedge from the vertex in the di
rection in which the forced flow occurs. The y coordinate is normal 
to the surface. The wall temperature is allowed to vary only in the 
vertical direction: i.e., in the z direction in case a (7 = 0) and in the 
x direction in case b (7 = 7r/2). 

The case 7 = ir/2 has been considered by Sparrow, et al. [6] for 
uniform wall temperature and uniform wall heat flux distributions 
03 = 2/3 and 3/4, respectively) and by Gunness and Gebhart [7] who 
also included the normal pressure gradient effect. 

The boundary layer equations for the case 7 = 7r/2 are given in [6] 
and [7] withg* of [6] replaced by gsin (7T/3/2). For the case 7 = 0, they 
are given by 

du du dw 
— + — + — = 0 
dx dy dz 

du du du r.dU d2u 
u 1- v h w — = u 1- v—-

dx dy dz dx dy1 

dw dw dw d2w nlFwl m % u — + y — +w — = v—T + gfi(T-T«,) 
dx dy dz dy2 

dT dT dT d2T 
u 1- v 1- w — = a — -

dx dy dz dy2 

The boundary conditions for equations (1) to (4) are 

(1) 

(2) 

(3) 

(4) 

(5) 
u = v = w = 0, T = Tw a t y = 0 

u — U, w — 0, T — T„ as y — » 

For the 7 = 0 case, two stream functions ^ and cj> may be defined 
to cope with the three dimensional flow [8] 

d\j/ 
(6) u = — , ( 

dy dx 

The following substitutions transform the (x, y, 2) coordinates to (£*, 

d<f> , d</> 
— and w = — 
dz 3y 
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£z, v(x> y))> for a free stream velocity and wall temperature that vary 
according to the power laws U = u\xm and Tw — To. = Nzn 

7) = (ui/v^x^-Wy = RexV*y/x 

& = (" /« i ) 1 / 2 * l /2 r (l-m)/2 : x/Rex
1/2 (7) 

^ = 2 ( l - n ) / 4 / C = 2 / ( G r z / 4 ) l / 4 

In addition, dimensionless stream functions F(£x, t.z, v), G(kx> £z. )?) 
and a temperature function H(t;x, £2, r\) are defined as 

H-

F = \P/(ulu)1'2x^m+1>'2 

G = 0/4KCZ<"+ 3>/ 4 

(T - 7,„)/.(TI„ - T„) = (T - T~)/Nz" 

where C = (̂ /31 AT j/4^2)1 ' '4 

(8) 

(9) 

(10) 

(11) 

The absolute value of Af is used in equation (11) to permit consider
ation of wall temperatures that are higher (N > 0) or lower (N < 0) 
than the ambient temperature. 

Introducing (6) to (10) in equations (2) to (4), we obtain, for N > 
0, 

+ |—;—\FF" + m(l 

1 — m 

• F' 2) + — (re + 3)F"G •• 

UF'F'(x-F"Fh) 

+ ^ ( l - r e ) ( G ' F ' { 2 - J F " G f z ) (12) 

G'" - •—-] F'G' + ( ^ - t i j FG" + ^ (re + 3)(GG" - G' 2) 

+ [j)3H = p - p ) fc(FG't - G " ^ ) 

if" + Pr ' ^ - ^ * » ' + ^ ((re + 3)GH' 
i 2 / £2 

+ ( r e - l ) £ x ( G " G f z - G ' G ' f e ) 

4reffG')) 

(13) 

Pr ZAF'H^-H'Ft,) 

+ Pr(re - l)^(H'G(l - G'Hiz) 

And the transformed boundary conditions are 

Fitx, &. 0) = F ' (fc, fc, 0) = G(&, &, 0) = G ' f e , fc, 0) = 0 J 

if ( k , k , 0) = 1 > 

*"(&, &. - ) = 1. G'(fx, &, » ) = if (fc, &, ») = 0 I 

(14) 

(15) 

In the foregoing equations, primes denote partial differentiation with 
respect to 7] and subscripts £x and £2 denote partial differentiation 
with respect to those variables. 

For N <0, only the term (£x/£2)3ff in equation (13) changes sign. 
In this circumstance, we merely need to replace £z by — £2 and G by 
- G to obtain a set of equations and boundary conditions identical 
to equations (12-15). This fact implies that there is no distinction 
between flows for which the fluid motion caused by free convection 
is vertically up or vertically down, at least when forced convection is 
dominant. 

Equations (12-15) may be solved for various combinations of m and 
n by using one of several solution methods appropriate for nonsimilar 
equations. 

In the case m = n = 1, equations (12-14) reduce to ordinary dif
ferential equations and £x and £2 become parameters independent 
of x and z, respectively. Only for this particular choice of m and re does 
the problem under consideration admit a similarity solution. The 
parameters £x and £z then appear only as the ratio ijx/£2 in the 
transformed equations. This ratio measures the relative magnitude 
of the free convection effect to the forced convection effect. In physical 
terms the flow, is represented by a two-dimensional stagnation line 
flow in the x -direction and a surface temperature varying linearly in 
the z direction. For each flow, considered separately, the boundary 

Fig. 1 Physical model and coordinate system 
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Fig. 2 Nusselt number results for Pr = 0.7 and 6.0 

layer thickness and the heat transfer coefficient are uniform over the 
surface. 

In their consideration of the case y = w/2, Sparrow, et al. [6] show 
that a variety of wedge angles and surface temperature distributions 
lead to similar solutions. They found a relation between m and re given 
by m = (re + l)/2, and presented results for (m, re) = (2/3, 0) and (3/4, 
1/5). 

R e s u l t s and D i s c u s s i o n 
For the vertical stagnation line case 7 = 0, and m = re = 1, numerical 

solutions were carried out for Prandtl numbers of 0.7 and 6.0. For each 
Pr, the quantity £(=£x/£2) was varied from 0 to 2, thus spanning the 
range from pure forced convection to dominant free convection. 

The primary physical quantity of interest is the heat transfer rate. 
It can be written in terms of the variables of the analysis, as indicated 
in Fig. 2. Values of Nux/Rex1 '2 as a function of the parameter £ are 
plotted as solid lines in Fig. 2 for Pr = 0.7 and 6.0. These values are 
also listed in Table 1 as are the dimensionless wall shear stresses, F"(i~, 
0)andG"(£ ,0) . 

Figure 2 also contains straight lines that represent Nux /Rex
 1/z for 

pure forced convection flow and for pure free convection flow. The 
equations of these limiting lines are 
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Table 1 Skin friction and heat transfer results for Pr = 0.7 and 6.0 m = n = 1,7 = 0 

Pr = 0.7 Pr = 6.0 

-H'(€,0) F"(tj,0) G'(f,0) -H'(f,0) F"(*,0) G"(£,0) 

0.0 
0.2 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
2.0 

0.49586 
0.49712 
0.51469 
0.53816 
0.57350 
0.61934 
0.67325 
0.73293 
0.79661 
0.93149 
1.07211 
1.21582 
1.50790 

1.23258 
1.23284 
1.23642 
1.24145 
1.24951 
1.26086 
1.27547 
1.29319 
1.31384 
1.36313 
1.42176 
1.48832 
1.64042 

0.0 
0.00598 
0.04649 
0.08753 
0.14339 
0.21318 
0.29579 
0.39039 
0.49648 
0.74217 
1.03194 
1.36560 
2.16462 

1.11468 
1.11612 
1,13700 
1.16686 
1.21555 
1.28424 
1.37116 
1.47296 
1.58608 
1.83480 
2.10132 
2.37719 
2.94211 

1.23258 
1.23269 
1.23420 
1.23633 
1.23997 
1.24537 
1.25261 
1.26166 
1.27245 
1.29869 
1.33043 
1.36686 
1.45130 

0.0 
0.00331 
0.02618 
0.05110 
0.08423 
0.12842 
0.18235 
0.24541 
0.31703 
0.48436 
0.68246 
0.91060 
1.45616 

Table 2 Skin friction and heat transfer results for Pr = 0.7, m = n = 1, y = ir/2 

Aiding Opposing 

f -ff'(f,0) F"(£,o) -mm F"(m 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 

0.70898 
0.70900 
0.70938 
0.71100 
0.71531 
0.72412 
0.73926 
0.76212 
0.79329 
0.83247 
0.87874 
0.98783 
1.11188 
1.24489 
1.38331 

1.23258 
1.23278 
1.23579 
1.24876 
1.28349 
1.35577 
1.48421 
1.68842 
1.98721 
2.39759 
2.93460 
4.44228 
6.66123 
9.54433 
13.33925 

0.70898 
0.70895 
0.70857 
0.70693 
0.70244 
0.69264 
0.67347 
0.63692 
0.55868 

1.23258 
1.23239 
1.22938 
1.21634 
1.18102 
1.10543 
0.96370 
0.71509 
0.27193 

No,/Re* 1/2 0.49586 for Pr = 0.7 

' 1.11468 for Pr = 6.0 

No,/Re*1 

forced convection: 

m = 1 

free convection: 

(16) 

(17) 
0.74680 £ for Pr = 0.7' 

1.45702 £ for Pr = 6.0. 

Figure 2 shows that for small values of the parameter £ the Nusselt 
number results merge with the asymptotes for pure forced convection. 
For increasing values of the parameter £, the Nusselt number for 
mixed convection flow is higher than it could be in either of the 
component flows. The greatest deviation of the Nusselt number from 
the envelope formed by the two limiting lines occurs at the intersec
tion of these lines. These deviations are approximately 23 percent for 
Pr = 0.7 and 20 percent for Pr = 6.0. 

New results for 7 = 7r/2, m = n = 1 were obtained in this study from 
solutions to the equations in the present notation given by Sparrow, 
et al. [6]. The heat transfer results are given in Table 2 for Pr = 0.7 and 
are plotted in Fig. 2. Of course, it is possible to distinguish between 
aiding and opposing flows, in this case. By extrapolating -F"(£, 0) to 
zero, we found separation to occur at £ =* 0.82, in the opposing flow 
case. 

The forced convection asymptotes (£ -»• 0) for 7 = 0 and 7 = TT/2 
are different from each other because the thermal boundary condi
tions are different. When 7 = 0, the wall temperature is uniform in 
the flow direction; when 7 = 7r/2, the wall temperature varies linearly 
in the flow direction. 

Conclusions 
1 Mixed convection about a vertical surface leads to a similar 

solution of the boundary layer equations only for the case of a vertical 
stagnation line and a linearly varying wall temperature in the vertical 

direction. The dimensionless heat transfer rate depends only on the 
parameter £ = (v/iti)1/2C and is uniform over the surface. 

2 In the flows considered here, there is no distinction between the 
heat transfer and skin friction results for wall temperatures that are 
higher or lower than the ambient temperature. This conclusion is not 
restricted to cases for which there are similar solutions. 

3 Solutions for Pr = 0.7 and 6.0 show a heat transfer rate greater 
than that achieved for either flow acting alone, but less than their 
sums. 
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Heat Transfer from Rotating 
Bodies of Arbitrary Contour 

Aryadi Suwono1 

1 I n t r o d u c t i o n 
In a recent paper by the author [1], the velocity distribution in the 

steady laminar boundary layer flow induced by a rotating body of 
revolution of arbitrary shape in an infinite incompressible fluid at rest 
was investigated. The analysis employs a suitable coordinate trans
formation and the governing momentum equation is expressed in term 
of a sequence of universal functions which depend only on the class 
of the body shape and not on details of the contour. The results have 
been applied to a rotating sphere, and the flow characteristics ob
tained agree very well with the experimental data even only a few 
terms of the series was used. 

In the present investigation, using the results of reference [1], the 
thermal boundary layer characteristics for rotating bodies of revo
lution of arbitrary shape heated to a uniform surface temperature To 
in an infinite incompressible fluid of undisturbed temperature T„ 
at rest have been examined numerically. The solution is given in terms 
of series of universal functions. 

2 Development of Basic Equations 
Let x, y, and z be distances along the surface in a meridian plane, 

normal to the surface and along the surface in a plane normal to the 
axis of rotation, respectively, of a nonrotating orthogonal curvilinear 
coordinate system with the corresponding velocity components u, u, 
and w. Neglecting dissipation, in dimensionless terms of stretched 
coordinates and normalizing velocities and temperatures, the steady 
incompressible flow and energy equations under the usual boundary 
layer approximations are given by 

du du u dr 

dx dy r dx 
0 

_ du _du 
u — + u — — 

dx dy 

_ dw _ dw 
u —^ + v —3 + 

dx dy 

w w2 dr 

f dx 

uw dr 

r dx 

_dT _ d T 
u —3 + v —3 = Pr 

dx dy 

a2iz 
dy2 

d2w 

ay2 

a2T 
dy2 

(i) 

(2) 

(3) 

(4) 

In equation (4), Pr denotes the Prandtl number, via, where v and a 
are the kinematic viscosity and thermal diffusivity. The stretched 
coordinates and the normalizing quantities are defined by 

_ x 
x -—, 

L y: Re1 '2 y 

u = —, v = Rei'i-

z 

L 

w (5) 
wL wL 

- T-T„ 
T = 

T 0 - T „ 

where L, OJ, and Re are the characteristic length, angular velocity of 
rotation and Reynold number Re = wL2/v 

The appropriate boundary conditions are 

57=0 U--

y-

•- 0 Tu

rn, T- • 0 

1 

(6) 

The solution of (1-3) subject to the boundary conditions (6) has 
been found [1] by introducing the transformation of variables 
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£ = J" [rmfdx, v = (2£)i/2 y 

r~4>(x, y ) 

(7) 

(8) 
(2£)l/2 ' ° v s ' (2£)l/2 

where \p(x, y) and ij>(x, y) are dimensionless stream functions defined 
by 

r dy f dx dy 

and following by writing the solution in the form 

(9) 

/(£, v) = E fn(v)Han, g(t v) = T. gnbi)?"1 do) 

where a is a positive constant to be determined from the expansion 
of the principal function P(£) = 2%rldrd%, which appears in the 
transformed equations, over the variable £ 

P(& = T. Put™ 
n = 0 

(ID 

It has been identified that if the dimensionless meridional profil of 
the surface 7 satisfies the relation 

r(x) = xp £ rnx
qn 

n = 0 

where q is also a positive constant, a is given by 

(12) 

3p + 1 

In term of new variables the energy equation (4) is written as 

.d(T,f) 

(13) 

P~ lT" + fT = 2f 
m, v) 

(14) 

Here, and in the equations which follow, primes denote partial dif
ferentiation with respect on t\ and d(,)/d(£, rj) is the Jacobian. The 
appropriate boundary condition are 

7) = 0 T = 1 and v^ooT^O (15) 

It should be noted that the flow is similar when r = roxp. For this case, 
the Jacobian in equation (14) vanishes and the temperature profile 
is also similar. It can be shown by a simple transformation that the 
transformed momentum and energy equations can be expressed 
identical to those of Dorfman and Serazetdinov [5] when the dissi
pation terms are omitted. For p = 1, it reduces to the case of a rotating 
disk or cone and reference [5] shows that the results agree with those 
obtained in a previous study by Sparrow and Gregg [7]. 

To obtain the solution for the energy equation subject to its bondary 
conditions (15), expand T(£, r/) in a form similar to that of/ or g, 
i.e., 

na, v) = E Tn(v)nan 

n = 0 

(16) 

Insertation of eqation (16) into equation (14) and comparison of equal 
powers of £, a system of ordinary linear differential equations is ob
tained for the determination of Tn(rj), 

P i - i T 0 + /0To = 0 

Pr-'Tl + f0Tn - 2 an f0Tn + (1 + 2 an)T0fn 

(17) 

•• E \2amTmfn„m-(l + 2am)fmTn-m\ (18) 
m = l 

with 

To(0) = 1 T„(0) = 0 f o r r a > 0 

7\,(»),r„(co)^o (19) 

Furthermore, in order to make use the numerical results of flow 
characteristics tabulated in reference [1], which are given in terms of 
series of universal functions, i.e., depend only on parameters p and 
q, equation (16) will be written as 

778 / VOL. 102, NOVEMBER 1980 Transactions of the ASME 

Copyright © 1980 by ASME
  Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Wall derivatives of functional coefficients for Pr = 0.72,1,100 and q = 2 

Po 

1/2 
1/4 
1/6 
1/8 
1/10 
1/12 
1/14 
1/16 
1/18 
1/20 

-To(0) 

0.232336 
0.209305 
0.194143 
0.183187 
0.174737 
0.167926 
0.162261 
0.157436 
0.153252 
0.149570 

Pr = 

-ru(o) 
0.080990 
0.186045 
0.268029 
0.341302 
0.409228 
0.473347 
0.534528 
0.593343 
0.650187 
0.705350 

0.72 

- T ' M ( 0 ) 

0.089393 
0.184884 
0.258254 
0.324055 
0.385184 
0.442965 
0.498150 
0.551237 
0.602570 
0.652404 

T2,i(0) 

0.102056 
0.299405 
0.573222 
0.918208 
1.329428 
1.803284 
2.336950 
2.928159 
3.575007 
4.275867 

-T'o(0) 

0.280190 
0.251401 
0.232850 
0.219544 
0.209320 
0.201099 
0.194271 
0.188462 
0.183429 
0.179003 

Pr 
-T'u(0) 

0.103101 
0.231185 
0.331459 
0.421148 
0.504314 
0.582826 
0.657749 
0.729777 
0.799394 
0.866950 

= 1 

-^2,2(0) 

0.113375 
0.230571 
0.320984 
0.402108 
0.477481 
0.548728 
0 616776 
0.682236 
0.745533 
0.806980 

-n,i(o) 
0.124240 
0.368138 
0.706408 
1.132581 
1.640588 
2.225998 
2.885317 
3.615742 
4.414927 
5.280839 

-To(0) 

1.900095 
1.653160 
1.514152 
1.419390 
1.348515 
1.292462 
1.246434 
1.207600 
1.174156 
1.144889 

Pr: 
- T u ( 0 ) 

0.973726 
1.894463 
2.633486 
3.297109 
3.913086 
4.494690 
5.049668 
5.583103 
6.098544 
6.598624 

= 100 

-7"2,2(0) 

1.043155 
1.929306 
2.630902 
3.261185 
3.846579 
4.399568 
4.927417 
5.434904 
5.925362 
6.401267 

T2,i(0) 

0.889887 
2.766315 
5.374460 
8.661124 
12.581414 
17.101250 
22.193781 
27.837346 
34.013686 
40.707247 

Table 2 Comparison of different predictive methods on local heat transfer parameter, Nu/Re1/2, for a 
rotating sphere (Pr = 1) 

X 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
TT/2 

ITerm 

0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 

According to Banks [2] 
2 Terms 

0.3963 
0.3932 
0.3839 
0.3684 
0.3467 
0.3188 
0.2848 
0.2445 
0.2053 

3 Terms 

0.3963 
0.3932 
0.3838 
0.3682 
0.3460 
0.3171 
0.2813 
0.2380 
0.1949 

4 Terms 

0.3963 
0.3932 
0.3838 
0.3681 
0.3458 
0.3163 
0.2788 
0.2318 
0.1826 

ITerm 

0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 
0.3963 

According to reference [31 
2 Terms 

0.3963 
0.3923 
0.3806 
0.3616 
0.3362 
0.3052 
0.2699 
0.2318 
0.1981 

3 Terms 

0.3963 
0.3923 
0.3803 
0.3601 
0.3316 
0.2947 
0.2498 
0.1977 
0.1486 

4 Terms 

0.3963 
0.3934 
0.3844 
0.3688 
0.3456 
0.3140 
0.2734 
0.2241 
0.1758 

5 Terms 

0.3963 
0.3934 
0.3844 
0.3687 
0.3449 
0.3116 
0.2670 
0.2099 
0.1510 

6 Terms 

0.3963 
0.3933 
0.3849 
0.3709 
0.3513 
0.3248 
0.2896 
0.2428 
0.1919 

Calculated from equ 
1 Term 2 Terms 

0.3963 
0.3936 
0.3857 
0.3727 
0.3546 
0.3316 
0.3042 
0.2725 
0.2427 

0.3963 
0.3931 
0.3829 
0.3688 
0.3483 
0.3230 
0.2936 
0.2607 
0.2305 

lation (25) 
3 Terms 

0.3963 
0.3931 
0.3836 
0.3677 
0.3455 
0.3173 
0.2842 
0.2477 
0.2149 

T(H, v) = T0(v) + PiTltl(v)H° 

+ \P2T2,2(V) + PWz.iivM2" + • • • (20) 

The equation (17) remains unchanged, but the equation (18) is 
modified. The first two terms are given by 

Pr -1?1 ';,! + / „ T M - 2af0Thl + (1 + 2a)T0/1 ,1 0 

Pv-'Tii + /oT'2,i - 4af0T2,i + (1 + 4a)T0/2 ,1 = 

2 a / u T 1 , 1 - (1 + 2a)/1,iT'1 

with the boundary conditions 

To(0) = 1 T u ( 0 ) = T2,2(0) = T2|1(0) = 0 

T0(») , Ti , i (») , T2 ,2(»), T2>1(«.) - 0 

(21) 

(22) 

(23) 

(24) 

3 R e s u l t s 
Equations (17, 21, 22), and (23) with boundary conditions (24) have 

been integrated numerically following the Runge-Kutta-Merson 
procedure, with the error maximum of intergration less than 10~7 in 
each step, for Pr = 0.72, 1, 10, 100, q = 1, 2 and various values of P 0 

= 2p/(3p + 1). The quantities of wall derivatives for Pr = 0.72,1,100 
and q = 2 are given in Table 1 (others may be obtained from the au
thor). Now, by simply assembling the values given in Table 1 as 
coefficients of a series, the surface heat flux qs from a rotating body 
of revolution of arbitrary shape in a fluid at rest can be calculated. In 
term of the local Nusselt number, it is given by 

R e ^ = Re'Wo-T.) = ~ ( 2 ^ [ T ° ( 0 ) + P > T i - l ( 0 ) * a 

+ |P2Tu(0) + PlT'2il(0W + . . .] (25) 

4 A p p l i c a t i o n to ro ta t ing spheres 
Consider an example of application of the results to the well studied 

case of a rotating sphere. If the radius of sphere R is taken as a char
acteristic length, r, £, p, q, PQ, P\, P2 , and are given by 

sin x, £ = cos x + -

1, q = 2, P0 = 1L Pi = - - , P 2 = - -

3 

11 

72 ' 
1/2 (26) 

The results of Nu/Re1 /2 calculated from equation (22) at various 
points for Pr = 1 are tabulated in Table 2. These results are compared 
with the values obtained using the Blasius series [2] and those pre
dicted by Dorfman and Mironova [3]. The degree of convergence of 
each method is indicated by showing the effect of individual terms. 
The convergence of the present method is some what faster. The 
disagreement of the three methods in the region 1 < x < it may be due 
to this fact, it should be noted that in the Blasius series, the solution 
is expressed in the form of series expansion over 0 < x < ir/2, and over 
0 < t;{x) < 1 in the method proposed by Dorfman and Mironova [3], 
compared with the variable used for expansion in the present analysis 
0 < £ < %. The most interesting is the fact that the first term of the 
present method give already a better approximation compared with 
that of Banks [2] or Dorfman and Mironova [3] where the first term 
give only the solution for a rotating disk. This is due to inclusion of 
the effect of the body shape in the first term through the transformed 
variable £. Accounting that near the equator the boundary layer 
analysis can not be applied due to the effect of flow eruption, for many 
purpose the use of the first term can be justified. It should be noted 
that alternatively for the rotating sphere case, (/ in the equation (26) 
can be taken equal to 1, and since the sine function has the expansion 

form 2^ s : » r 
1/(2n + 1)! then p should be taken equal to 1 and ac

cordingly n = rn = . . = r2„+i = 0. However it is evidence that more 
terms are required to achieve a certain accuracy. 

The experiments on the heat transfer from a rotating sphere have 
been carried out by Kreith, et al. [4]. The results obtained is correlated 
by the equation 

Nu = 0.86 Pr°-4Re1/2 (27) 

to within 15 percent. Integration of equation (22) over the sphere 
surface yields Nu = 0.552 Re1/2 for Pr = 0.72 which agrees with pre
diction of Dorfman and Serazetdinov [5] and slightly higher than that 
obtained by Banks [2] but much below the experimental data. This 
discrepancy can still not be explained. Dorfman and Serazetnov be
lieve that this may be due to the effect of natural convection and 
eruption at the equator which are not taken into account in calcula
tions. 

Banks [2] proposed, based on the results of average Nusselt number 
calculated for Pr = 0.72 and 1, a relation similar to equation (27) by 
replacing the constant 0.86 by 0.58. A careful examination shows that 
this relation is valid only for a limited variation of Prandtl number. 
Using the calculation results of average Nusselt number for Pr = 0.72, 

(continued on page 789) 
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r a m e t e r a increases . T h i s is due to i rreversible conversion of m e 
chanical energy t o t h e r m a l one. 
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-Suwono Continued* 
1 , 1 0 , 1 0 0 a n d the resu l t for a very large P r a n d t l n u m b e r ca lcula ted 

assymtotically using Lighthill 's hypothesis (see for example reference 

[6]), it is possible to cons t ruc t an empir ical formulae which is valid 

for larger var ia t ion of P r a n d t l number . I t is found t h a t t h e following 

re la t ion. 

N u = 1.021 R e 1 / 2 P r 1 / 3 [1 - 0.244 P r " 1 ' 3 

- 0.139 P r ~ 2 / 3 + 0.035 P r " 1 ] 

for P r > 0.72 

Cor re la tes t o wi th in 2 pe rcen t of the calculat ion resul ts . 

(28) 
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Turbu len t Heat Transfer to a 
Rotat ing Disk: a Review and 
Extension of Dorfman 

M. C. Johnson1 

N o m e n c l a t u r e 
T = temperature 
T,„ = temperature of disk wall 
T„ = temperature of rotating fluid core 
R = radius 
Z = axial distance from rotating disk 
W = angular velocity of disk 
q = heat flux 
VR = velocity of fluid in radial direction 
V R A V E = average radial velocity at a particular radius 
Vo = tangential velocity of fluid in core 
Vz = velocity of fluid in axial direction 
<5r = thermal boundary layer size 
<5 = momentum boundary layer size 
p = fluid density 
cp = fluid heat capacity 
Pr = jUCp/K(Prandtl number) 
(i = fluid viscosity 
h = film coefficient 
Re = (WR - V„)Rp/ix(Reyno\ds number) 
St = Nu/Pr Re (Stanton number) 
v = kinematic viscosity 

I n t r o d u c t i o n 
Heat transfer from a rotating disk to the rotating fluid adjacent to 

it is defined by the boundary layer energy equation 

/ dT dT\ dq 
(1) 

Normally, the heat flux at the disk wall is found using Reynolds 
analogy. Reynolds analogy applies when the form of the tangential 
momentum equation and the energy equation are shown to be exactly 
similar. As shown by Dorfman [1], the Reynolds analogy also requires 
the tangential momentum and energy boundary conditions to be 
exactly similar. For a rotating disk, these conditions can be generalized 
as follows [2]. 

HTJbR _ d/dft(flV_) 
\2i) 

d/dR(Tw - T„) 

R2W-RVa 

d/dR(R2W - RV„ 

R2W-RV«, 

For the case of a disk rotating in a quiescent atmosphere, these con
ditions become 

Tw-T„=: C0R
2 

1 a. = C\ (3) 

In general, these boundary conditions are not met, and it is necessary 
to look elsewhere for a solution of the boundary layer energy equa
tion. 

Dorfman' s M e t h o d 
Dorfman [1] considered the case of a disk rotating in a quiescent 

atmosphere (V» = 0). He integrated the boundary layer energy 
equation (1) across the thermal boundary layer and introduced the 
continuity equation, yielding 

d/dR 1 
0 

VR(T - l\)dz 
Rq 

PCp 

or, in the dimensionless form 

1 

WR2{TW - T„) 
d/dR 

0 
VR(T-T„)dz 

(4) 

•• St (4a) 

The primary difficulty in solving this equation is the assumption 
of a model for the wall heat flux, which Dorfman assumes in the fol
lowing form 

X 5T \ — m 

VR(T - T„)dz (5) 
where m is a constant to be determined experimentally. 

The assumption of (5) reduces equation (4) to a separable nonlinear 
differential equation. 

The actual form of Dorman's assumption is 

S r 1 = A(Pr)(Re**)n (6) 

A(Pr) is a function of the Prandtl number and Re** is a thermal 
Reynolds number using a weighted thermal boundary layer size as 
a characteristic dimension. It is defined in the next section. 

Equation (6) can be rearranged in the form 

pcpWR(Tw - T„) 

A(Pr) lx(Tw - T„ J
* ST 

VR(T~ 
o 

T«,)dz 

(7) 

Substituting this expression into equation (4), separating variables, 
assuming constant fluid properties and integrating, an expression for 
the Stanton number can be found. 

St = 
R e - m / m + l ^ _ f \mftm(m+S)lm+l 

[A(p r)]l/m+l 

rR 

Jo 
T„)™+Wm+2dR 

-m/m+1 
(8) 

This equation represents a general expression for the Stanton 
number. Now m and A(Pr) must be determined empirically. Although 
any data correlation could be used, it will be convenient to use one 
such that the disk temperature distribution is rigidly defined. Such 
conditions exist for the Reynolds analogy. 

Dorfman gives an expression for the Stanton number of a disk ro
tating in a quiescent atmosphere for Reynolds analogy conditions 
(turbulent flow) [1]. 

St .= 0.0267 Pr-°-4Re-°-2 
(9) 

As shown in equation (3), the Reynolds analogy temperature dis
tribution on a disk rotating in a quiescent atmosphere is parabolic (Tw 

= CoR2 + To.). Substituting this expression for Tw into equation (8), 
and rearranging in the form of equation (9), the required empirical 
constants are found to be 

A(Pr) 

= 0.25 

135.7 Pr0-5 (10) 

Therefore, for turbulent flow conditions, the expression for the 
Stanton number for a rotating disk in a quiescent atmosphere is 

St = 
Pr-0-4Re-°-2T„, - T„)°-2Bfl0-66 

53.14 f (Tw - T„y-25R2-2bdR 

(11) 

An application of this equation for temperature distributions of 
the form: Tw — T„ = BRm is discussed in reference [3]. 

1 Department of Mechanical Engineering, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139. 
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I m p r o v e d M e t h o d 
Arbitrary Fluid Core Rotation and Density Variations. 

Dorfman considered only the case of a disk rotating in a quiescent 
atmosphere. He defined the thermal Reynolds number as 
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Re* 
WRST** 

and the integral thermal boundary layer thickness as 

>SrVR(T-T„)dz Sr** = f 
WR(TW - r„) 

A simple extension of Dorfman's method can be effected by al
lowing for arbitrary fluid core rotation. This can be done by replacing 
the wheel speed (WR) with the relative speed (WR - V„). The 
thermal Reynolds number then becomes 

Re* 
(WR - V„)5T** 

and the integral thermal boundary layer thickness becomes 

"T VR(T-Ta)dz 
8T** s (WR - V„)(TW - 7\») 

Using these forms in equation (6) and allowing for density varia
tions, equation (11) for the Stanton number becomes 

S t : 
Pr-°-HTw 

(53.14) J.fl •2B(WR - V~)(TW - T„)1 2 6dfl 

(12) 

Beginning of Boundary Layer Growth. Dorfman assumes that 
boundary layer growth begins at R = 0. This is not always the case. 
A common example can be found in the compressor disk cavities of 
a gas turbine engine. Mid-compressor air is bled into these cavities 
for cooling purposes. The air enters at the outer diameter of the disk 
cavities and exits at the bores in the center of the disks. On the disks, 
a boundary layer develops which begins at the outer diameter, flows 
radially inward and exits at the disk bores. 

This modifies equation (12) as follows 

Pi-o-HTw - T„ ) a 2 5 f l ° - 2 V' 2 

S t = -

(53.14) C*pR 125(WR - V-)(TW - T„)1 2 5dfl 

(13) 

#o is the radius where boundary layer growth begins. 
Variations in Fluid Core Temperature. If the fluid core tem

perature (T„) cannot be considered a constant, equation (4) needs 
to be modified 

d/dR 1 

o 

VR(T-T„)dz 

X «T dT„ Rq 

dR 

or, as in equation (4a), in terms of Stanton number 

(14) 

R(TW - T„)(WR - V„)p 
d/dRlpR C 

„ r5T d'L\ 
+ RP vR—-dz 

Ja dR 

VR(T-

dT„ 

T„)dz 

St (14a) 

Substitution of assumption (7) into equation (14) will lead to a dif
ferential equation which is no longer separable. To solve the resulting 
equation it is necessary to make several new assumptions. 

1 Assume a shape for the radial velocity profile in the boundary 
layer: 

VR = 2A5VRAVE(Z/8)^[1 - (Z/S)] (15) 

2 Assume a shape for the temperature profile in the boundary 
layer: 

T=Tw + (Ta-Tw)(Z/8) 1/7 (16) 

3 Assume that the thermal boundary layer size is greater than or 
equal to the momentum boundary layer size: 

ST > 8 (17) 

Using these assumptions along with equations (7) and (14) 
yields 

r]" 
drj kr\ 

dR T, T„ dR 

where 

_ p"+'p'»(r t t , - T„)m+1(RW - V„)Rm+l 

A(Pr) 

r, = Rp(RW - V„)(r„, - T „ ) 6 T * * 

(18) 

k is a constant arising from the integration of the product of the radial 
velocity and temperature boundary layer profiles. 
This equation can be solved by the introduction of an integrating 
factor 

exp (m + l)k 
dTJdR 

dR 

Using the integrating factor, equation (18) can be integrated. Fol
lowing the technique used to derive equation (11) yields equation 
(19). 

For temperature profiles whose shape is known to be different from 
that assumed in equation (16), equation (19) can be changed to reflect 
this by changing the constant k introduced in equation (18). 

The only experimental results available are for the isothermal disk 
rotating in a constant temperature environment [4]. For that case, 
equation (19) reduces to match the experimental results. 
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St = 

p r-o.4Ro.25 ( ru j _ T . ) 0 - 2 6 ^ ' 2 exp [1.22 f 
dT^/dR 

Tw-T„ 
dR 

(19) 

(53.14) CPR1 

JR0 ' 
HTW - T„)lHWR - V „ ) exp K dTJdR 

dR\dR 
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Experimental Observations of 
Flow Instability During 
Turbulent Flow Freezing in a 
Horizontal Tube 

S. B. Thomason1 and J. C. Mulligan2 

Introduction 
Unsteady freezing processes are of importance in many applications 

generally and, notably, of specific importance to such technology 
development as liquid metal cooling and desalination by freeze 
crystallization. During some recent work in this area, in which ex
periments on the effects of turbulent-flow on freezing in tube flow 
were carried out, an unexpected oscillatory phenomenon was dis
covered. The objective of the experiments was to obtain transient and 
steady-state heat transfer and pressure-drop data for the controlled 
case in which the wall temperature of a tube containing a fully-de
veloped turbulent flow is instantaneously lowered to a uniform and 
constant temperature below the freezing point of the liquid. It was 
anticipated that the subsequent response would be a transient 
phase-change process leading to either a steady state with flow in the 
tube as presented in references [1-4], or to a complete blockage of the 
tube. On several occasions during the investigation, however, a third 
and unanticipated periodic response was observed. This response is 
presented and discussed here. 

Experiments 
The experiments were conducted using water as the freezing me

dium and, essentially, the same apparatus as described in reference 
[1]. Briefly, the water flow system consisted of inlet and exit con
stant-head reservoirs connected by a continuous entrance section 
171.1 cm long and a jacketed test section 116.0 cm long, constructed 
of copper tubing 1.45 cm in inside diameter with a wall thickness of 
0.07 cm. An upstream constant-temperature bath coupled with the 
inlet reservoir permitted the setting and control of inlet temperature, 
Tw\. Tube wall temperature was controlled by a methanol coolant, 
which was circulated in the jacket at a sufficiently large flow rate to 
minimize both the temperature rise of the coolant (usually less than 
0.2°C) and nonuniformities in tube wall temperature. The heat 
transfer coefficient, h, on the coolant side typically was relatively 
large. The inlet water temperature was held constant at 5.6°C and the 
exit static pressure at 7.9 cm of water during all experiments reported 
here, except one in which the inlet water temperature was 7.2°C. The 
water level in the upstream reservoir, (Ah + 7.9) cm, which was used 
to control the overall pressure drop across the system, Ah cm, and the 
coolant temperature, Tc, were varied to produce different initial water 
flow rates (Reynolds numbers, Rec;) and tube-wall temperatures, 
respectively. 

When the desired initial water flow rate and coolant temperature 
were set, the experiment was initiated by starting the coolant circu
lation through the cooling jacket, thus lowering the tube-wall tem
perature below 0°C in a manner closely approximating a step change. 
The instant at which freezing began in the experiments was accurately 
detected by monitoring the response pulse from three thermocouples 
imbedded along the tube wall. Each thermocouple pulsed rapidly, 
almost simultaneously, at the instant freezing started indicating the 
instant of initiation as well as confirming that the ice layer formed 
along the full length of the tube uniformly. The static pressure at the 
test section inlet, Po cm, was then recorded continuously and reported 
as a dimensionless pressure, P*, defined as 2(P0 - 7.9)/pu2 where v 
is the mean inlet velocity. The later quantity is related to the test 
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2 Professor, Department of Mechanical and Aerospace Engineering, North 
Carolina State University, Raleigh, N. C. 27650. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
of HEAT TRANSFER. Manuscript received December 3,1979. 

section inlet pressure by the entrance section characteristic equation 
Reo = 652.7 (AP)056 , where AP is the entrance section pressure drop 
(Ah + 7.9 — Po) cm, and Rerj is the. instantaneous pipe Reynolds 
number. Thus, values of P* can easily be translated into comparable 
flow rates, Rerj, by computation. The time, T, used in displaying the 
results represents the dimensionless liquid-phase Fourier number 
otit/rw

2. 

Results and Discussion 
Various combinations of coolant temperature, initial water flow 

rate, and inlet temperature, resulted in some distinctly different types 
of freezing response, as demonstrated by the selected pressure-drop 
versus time curves reported here. When the combination of these 
boundary conditions was not too severe, a smooth and relatively rapid 
transient occurred in which a true steady-state frozen shell was 
achieved and maintained within the tube. Responses of this type, 
which were expected, were obtained under a variety of conditions and 
are being reported under separate title. An example of such a pres
sure-drop response curve is shown by curve 1 in Fig. 1. 

As the combination of coolant temperature, initial water flow rate, 
and inlet temperature was varied to cause more severe freezing, a most 
interesting and unexpected flow response was observed. Distinct and 
significant oscillations in flow rate, pressure drop, and wall temper
ature began occurring in the transient icing process. Curves 2 and 3 
in Fig. 1 show results of two experiments at essentially the same initial 
Reynolds number and inlet temperature which illustrate this unstable 
oscillatory response. Both were obtained by slightly reducing coolant 
temperature and each ultimately approaches steady state. In these 
cases, the oscillations are seen to be very regular and tend to damp 
just as the steady state is reached. Under somewhat more severe 
coolant temperatures the oscillations become more extreme, as il
lustrated in Fig. 2, and somewhat random in the early periods of the 
transient although the regular damping trend always persisted. 

With the boundary conditions adjusted downward to even more 
conducive conditions, the most interesting phenomenon of the entire 
series of experiments resulted. In a very narrow range of coolant 
temperature, for a given initial water flow rate and inlet temperature, 
almost perfectly periodic pressure-drop and flow-rate variations oc
curred. The experimental pressure-drop results plotted in Fig. 3 are 
for such a case where the coolant temperature alone was slightly 
lowered, the period being approximately 35 min (AT ^ 6) and the 
total oscillation corresponding to 12.5 cm of water (AP* OL 20 and Ren 
variation of 3720 to 4660). These oscillations were observed for ap
proximately 3 hr and appeared to be quite regular. Similar periodic 
results for a somewhat lower coolant temperature as well as lower 
water flow rate are shown in Fig. 4. This experiment, which was carried 
out at a slightly higher inlet temperature, took place over a time span 
of approximately 2 1/2 hr and displayed a period of 29 min (AT =* 4) 
and an oscillation of approximately 4.7 cm of water (AP* =^9.5 and 
Reo variation of 3960 to 4200). The differences in the two sets of pe
riodic data reported here result essentially from the slightly different 
inlet flow rates, inlet water temperatures, and coolant temperatures 
which were imposed. The occurrance of this phenomenon in the ex
periments seemed to be extremely sensitive to coolant temperature 
and only moderately sensitive to initial water flow rate. Unfortunately, 
the experimental apparatus did not permit a clear definition of the 
separate effects of these variables. 

When the boundary conditions were further reduced, beyond the 
narrow limits of the periodic regime, the periodic freezing process 
began to break up and become unstable with pressure-drop patterns 
appearing wildly oscillatory and random in amplitude, extremely 
temperature sensitive and sometimes rapidly approaching freeze 
blockage on an upswing of pressure. With further slight reductions 
in the conditions, the freezing displayed a more stable and predictable 
transient leading definitely to freeze blockage, even though still with 
some oscillatory behavior. Such a response is illustrated by curve 1 
of Fig. 5, wherein the transition was produced by slightly lowering 
coolant temperatures. Finally, as explained in relation to Fig. 1, if the 
conditions were sufficiently extreme a smooth and rapid transient 
leading directly to freeze blockage occurred, without any signs of os-

782 / VOL. 102, NOVEMBER 1980 Transactions of the ASME 

Copyright © 1980 by ASME
  Downloaded 20 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



9 -

8 -

r f f fp^ 

JIF^ 

(3) OSCILLATORY 

i A A A i 

^ ^ T (210SCILLAT0RY 

-JSr 

8 p ( l > SMOOTH RESPONSE 

COOLANT-SIDE h =5340 W/mz-°C 

1 1 1 1 1 

TWI T c 
•C °C 

(1) 5.6 -6.2 

(2)5.6 -6.6 

(3)5.6 -6.8 

Ah 
cm 

45. 

45. 

45. 

Re 
Di 

5010 

5014 

5007 

L_ 

I 2 3 4 5 6 7 8 9 
T 

Fig. 1 Representative experimental pressure-drop transients terminating 
in a steady state 

Re =5012 
Di 

Fig. 2 Illustration of initially magnified pressure-drop oscillations which 
randomly damped to steady state 

dilation. Such responses are illustrated in curves 2 and 3 of Fig. 5. 
The controlled variables of coolant temperature, inlet water tem

perature and upstream and downstream pressure head were con
stantly monitored and carefully controlled, eliminating any cyclic 
variations to which the freeze oscillations might be attributed. Also, 
the freeze oscillations were reproduced a number of times and care
fully observed for several hours to insure their actual existence. Thus, 
it is believed that the data presented here represent a true demon
stration of the existence of essentially a third regime of freezing in 
turbulent tube flow, in addition to the two previously defined in 
laminar flow studies [4]. That is, conditions may be such that (1) a 
steady state occurs finally, (2) a freeze blockage occurs finally, or (3) 
a stable periodic state of alternate freezing and melting occurs. The 
conditions which are pertinent are such variables as the external 
coolant temperature and convective conductance, and inlet water 
temperature, the initial water flow rate (Reynolds number), the tube 
diameter and length, and the physical relationship between water flow 
rate and inlet pressure as dictated by the characteristic equation of 
the upstream flow system. The fact that the flow rate varies with the 
pressure drop should additionally have an influence on the actual 
frequency of the oscillation within the periodic regime. In the ex
periments presented here, with the exception of that depicted in Fig. 
4, all variables were held constant except coolant temperature. 
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blockage 

No single mechanism could be isolated as the cause of this unan
ticipated oscillatory behavior. An instability caused by a phenomenon 
associated with the inlet ice-free zone, which has been shown to exist 
by Zerkle [5], is one course of speculation. It has been suggested to the 
authors that it may even be related in part to an anisotropic behavior 
of the ice layer as found by Savino and Siegel [6]. A more likely ex
planation is that the phenomenon is related to a relaminarization and 
separation instability similar to that recently reported by Gilpin [3]. 
A "banded" or wavy-ice structure was shown to occur in tubes when 
freezing occurs with flow Reynolds numbers near transition. A peri-
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odic regime of pressure fluctuations could conceivably occur when 
the wavelength of the resulting ice structure is of the order of the tube 
length. 
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Solidification in Two-Phase 
Flow 

D. J. Petri©,1 J. H. Linehan,2 

M. Epstein,1 G. A. Lambert,1 

and L. J. Stachyra1 

Nomenclature 
a = crust thermal diffusivity 
A = heat flux parameter 
B = latent heat parameter 
c = crust heat capacity 
h = convective heat transfer coefficient 
j = superficial gas velocity 
k = crust thermal conductivity 
L = latent heat of fusion 
q — convective heat flux 
Tc = methanol coolant temperature (—70° C) 
T{ = liquid temperature 
TMP = fusion temperature 
Tw = wall temperature 
t = time 
a = void fraction 
5 = crust thickness 
dss = steady-state crust thickness 
bw = wall thickness (0.238 cm) 
T = dimensionless time 
A = dimensionless crust thickness 
d = dimensionless wall temperature 

1 Introduction 
If, in the process of solidification, the liquid phase contains a gas 

in solution, the gas will be rejected at the phase interface due to the 
difference in solubility of the gas in the liquid and solid. The evolution 
of the gas may result in the entrapment of gas bubbles in the solid 
phase by the advancing solidification front [1]. The resulting porosity 
alters the properties of the solid [2]. If gas is present in the body of the 
liquid as a discontinuous phase, it is not clear at present what effect 
the two-phase mixture will have on the solidification process. The 
problem of predicting solidification rates in a two-phase mixture arises 
in safety studies for the fast breeder reactor [3] and in the design of 
air bubblers as ice control devices for cold-water ports and harbors 
[4,5]. 
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3 Void fraction was calculated as the difference between the height of the 
expanded pool and the initial height of the pool with zero gas flow divided by 
the expanded pool height. 

A study of the transient solidification of a Wood's metal-nitrogen 
gas mixture in a cold tube was performed by Greene, et al. [6, 7]. The 
authors postulated the entrapment of nitrogen gas bubbles within the 
solid phase and concluded from their experimental results that the 
rate of solidification may be several times faster for the two-phase case 
than for the corresponding single phase case. 

This paper presents the results of an experiment designed to 
measure directly the growth of an ice layer (crust) in a water-nitrogen 
gas mixture. 

2 Experiment 
A planar test section on which ice crusts were grown was vertically 

suspended in a pool of water contained within a Lucite bubble column 
of square cross-section (5.08 cm by 5.08 cm). Nitrogen gas bubbles 
were formed at a perforated plate located at the bottom of the column. 
The pressure in the column was atmospheric. A schematic of the ap
paratus is shown in Fig. 1. The test section was constructed from a 
copper block 7.62 cm in length and 0.635 cm thick. A serpentine 
coolant channel was milled into one face of the block. The freezing 
surface was 0.238 cm thick. Thermocouples (±1°C) were used to 
measure the test section temperature and were located in the freeze 
plate 0.2 cm from the freezing surface. The entire test section except 
for the freeze surface was cast in epoxy material to insulate the edges 
and back of the test section. The coolant supply line, connecting the 
coolant reservoir with the test section, was insulated with rubber 
tubing. A lateral-traversing thermocouple probe (not shown in Fig. 
1), similar to that developed by Savino and Siegel [8], was used to 
measure the instantaneous ice crust thickness as a function of time. 

Fig. 1 Schematic diagram of the test section showing an ice layer growing 
on the freeze plate in an ice-water mixture 
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odic regime of pressure fluctuations could conceivably occur when 
the wavelength of the resulting ice structure is of the order of the tube 
length. 
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in solution, the gas will be rejected at the phase interface due to the 
difference in solubility of the gas in the liquid and solid. The evolution 
of the gas may result in the entrapment of gas bubbles in the solid 
phase by the advancing solidification front [1]. The resulting porosity 
alters the properties of the solid [2]. If gas is present in the body of the 
liquid as a discontinuous phase, it is not clear at present what effect 
the two-phase mixture will have on the solidification process. The 
problem of predicting solidification rates in a two-phase mixture arises 
in safety studies for the fast breeder reactor [3] and in the design of 
air bubblers as ice control devices for cold-water ports and harbors 
[4,5]. 

1 Reactor Analysis and Safety Division, Argonne National Laboratory, 9700 
South Cass Ave., Argonne, IL 60439. 

2 Marquette University, Milwaukee, Wis. 
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3 Void fraction was calculated as the difference between the height of the 
expanded pool and the initial height of the pool with zero gas flow divided by 
the expanded pool height. 

A study of the transient solidification of a Wood's metal-nitrogen 
gas mixture in a cold tube was performed by Greene, et al. [6, 7]. The 
authors postulated the entrapment of nitrogen gas bubbles within the 
solid phase and concluded from their experimental results that the 
rate of solidification may be several times faster for the two-phase case 
than for the corresponding single phase case. 

This paper presents the results of an experiment designed to 
measure directly the growth of an ice layer (crust) in a water-nitrogen 
gas mixture. 

2 Experiment 
A planar test section on which ice crusts were grown was vertically 

suspended in a pool of water contained within a Lucite bubble column 
of square cross-section (5.08 cm by 5.08 cm). Nitrogen gas bubbles 
were formed at a perforated plate located at the bottom of the column. 
The pressure in the column was atmospheric. A schematic of the ap
paratus is shown in Fig. 1. The test section was constructed from a 
copper block 7.62 cm in length and 0.635 cm thick. A serpentine 
coolant channel was milled into one face of the block. The freezing 
surface was 0.238 cm thick. Thermocouples (±1°C) were used to 
measure the test section temperature and were located in the freeze 
plate 0.2 cm from the freezing surface. The entire test section except 
for the freeze surface was cast in epoxy material to insulate the edges 
and back of the test section. The coolant supply line, connecting the 
coolant reservoir with the test section, was insulated with rubber 
tubing. A lateral-traversing thermocouple probe (not shown in Fig. 
1), similar to that developed by Savino and Siegel [8], was used to 
measure the instantaneous ice crust thickness as a function of time. 

Fig. 1 Schematic diagram of the test section showing an ice layer growing 
on the freeze plate in an ice-water mixture 
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The thermocouple probe was constructed by mounting a 30 gauge 
chromel-alumel thermocouple within a 13 cm long, 0.32 cm o.d. tube. 
The bare-bead junction, extending 1.0 cm beyond the tube, was 
trimmed to minimize the response time, flattened slightly, and sup
ported by epoxy. The lateral displacement of the probe from the 
freezing surface was measured using a micrometer (±0.005 cm). 
During an experiment, the probe was initially located at a distance 
from the plate equal to the selected displacement increment used in 
subsequent measurements. The probe temperature was recorded on 
a strip-chart recorder. When the ice crust contacted the probe, as 
determined by watching the strip-chart recorder, the probe was moved 
laterally away from the crust a distance equal to the displacement 
increment. Thus, the strip-chart recording provided a means of de
termining the times of successive equal increments of crust thickness. 
A more detailed description of this procedure including representative 
tracings from the experiments is given in [9]. The water pool tem
perature was measured with a mercury thermometer (±0.1°C). 

Two water pool temperatures were studied; in one case the water 
was at 0°C (saturated), in the other case the water pool was main
tained at 14°C (superheated). The experiments covered a range of 
nitrogen gas volume (void) fractions from 0 to 90 percent. Void frac
tions3 from 0 to 65 percent were obtained by simply bubbling nitrogen 
gas through the perforated plate at superficial velocities ranging from 
0 to 12 cm/s into ordinary tap water. Foams having void fractions 
between 80 and 90 percent were produced by adding a small quantity 
of Kodak Photo-Flow solution to the pool in the ratio of about 2 drops 
to 150 ml of water. The ice growth transient was initiated by suddenly 
allowing the coolant (methyl alcohol at -70°C) to flow into the test 
section channel. The plate temperature- and crust thickness-time 
histories were recorded during the experiment. Over the course of an 
experiment with saturated water (~1 min.), the freeze plate tem
perature decreased to approximately -65°C and the resulting in
stantaneous crust thickness was approximately 0.65 cm. In the ex
periments with superheated water, the crust thickness grew more 
slowly in comparison to the experiments with saturated water due to 
the convective heat transport into the crust from the two-phase 
mixture. In these latter experiments, the crust thickness achieved a 
steady-state value after approximately three min. 

3 R e s u l t s and D i s c u s s i o n 
The measured (dimensionless) crust thickness as a function of di-

mensionless time is shown in Fig. 2 for water maintained at 0°C. The 
data flags in this figure represent the standard deviation of a total of 
18 runs in which the void fraction was varied from 0.0 to 90 percent. 
The coolant flowrate was fixed in the experiment so that the freeze 
plate experienced approximately the same cooling transient during 
each run. The freeze plate temperature-time curve can be found in 
reference [9]. For a given crust thickness, the measured times and void 
fractions for the 18 runs were subjected to a linear regression analysis. 
It was found that the slope of the regression line was not statistically 
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Fig. 2 Dimensionless crust thickness versus dimensionless time for ice 
growing in a two-phase water-nitrogen gas mixture maintained at 0"C. The 
data (lags represent 18 runs covering the void fraction range 0-90 percent 

different from zero. Thus, it can be concluded that, in these experi
ments, the void fraction does not determine the time for a given crust 
thickness to be achieved. The small variation in the measurements 
can be attributed to the small variations in the coolant flow rate from 
run to run. In addition, the physical characteristics of the ice crusts 
retrieved from the bubble column after the experiments did not 
change over the entire range of void fractions investigated. Thus, 
solidification of a two-phase structure (solid plus gas), as postulated 
in references [6] and [7] for the freezing of gas-liquid flows in a tube, 
was not indicated by the post-test observations. 

The dark line in Fig. 2 is based on calculations of ice growth into 
saturated water in the absence of voids. The theory is based on solving 
the one-dimensional heat conduction equation in the crust using an 
accurate collocation technique [10]. The resulting governing equation 

dA 

dr ' lA 2B 
J_ _ I_ A\2 2jr 
A 2BJ B A2 

1/2 

(1) 

where 

(•>") = —— — (dimensionless plate temperature) (2) 
' t — IMP 

A ( T ) = —— (dimensionless crust thickness) (3) 

at 

I) 2 
(dimensionless time) (4) 

q^u 

HTMP-

B-

•Tc) 

L 

(dimensionless convective heat flux) (5) 

(dimensionless latent heat) (6) 
C(TMP - Tc) 

For the case of a saturated liquid, A is set equal to zero. To solve 
equation (1) the measured wall temperature-time variation was used. 
The theory is seen to agree favorably with the data. All this strongly 
implies that the ice growth rate is the same in all runs studied, and 
is thus independent of the nitrogen gas void fraction, at least up to 
90 percent. At early times, the crust thickness is overpredicted by the 
model probably due to the formation of a metastable, subcooled water 
layer adjacent to the freezing surface. For low gas void fractions, it 
was observed that the formation of an ice crust did not occur until the 
plate temperature decreased several degrees below 0°C and then a 
crust "flashed" on the surface. Presumably, this phenomenon also 
occurred at higher void fractions but the presence of the bubbles 
obscured visual observation. 

In the experiments conducted with superheated water at 14°C, a 
steady-state ice crust was achieved when the conduction heat flux 
through the crust equaled the convective heat flux to the crust from 
the two-phase mixture at T -»• <*>. The measured local crust thickness 
at the center of the freeze plate as a function of time is shown in Fig. 
3 with A as a parameter. It is apparent that the steady-state crust 
thickness is a function of the superficial gas velocity;', varying from 
0.724 cm for ;' = 0.1 cm/s to 0.152 cm for ;' = 12.0 cm/s. Since the 
steady-state crust thickness, 5SS, is related to the convective heat 
transfer coefficient by 

^ h(Te - TMP) 
k(TMp - Tw) 

(7) 

it can be concluded that the convective heat transfer coefficient is 
increased when the superficial gas velocity is increased. This result 
is in agreement with studies concerned with the enhancement of 
convective heat transfer in liquids by gas injection [11,12]. Values of 
the convective heat transfer coefficient can be calculated from 
equations (5) and (7) and the values of A given in Fig. 3. 

The dark lines in Fig. 3 represent the predictions obtained with 
equation (1) wherein the convective heat-transfer coefficient h (or 
dimensionless parameter A) was evaluated using equation (7) together 
with the measured values of 5SS. This method of determining 
steady-state heat transfer coefficients from ice crust thickness mea
surements is well established [13]. Experimental studies involving 
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Fig. 3 Dlmensionless crust thickness versus dimensiontess time for ice 
growing In a two phase water-nitrogen gas mixture maintained at 14°C, using 
the superficial gas velocity (or convective heat flux) as a parameter 

solidification in pure liquids with forced flow have demonstrated that 
heat convection is relatively undisturbed by the moving freeze 
boundary [8,14]. The good agreement between theory and experiment 
shown in Fig. 3 is a clear indication that this is also the case for the 
two-phase solidification experiments reported herein. 

4 Conc lus ions 
The following conclusions may be made for the experiments re

ported herein. For void fractions up to 90 percent, the presence of a 
discontinuous gas phase in a saturated flowing liquid does not affect 
the freezing of the liquid on a vertical surface. The crust surface re
mains smooth and the void in the two-phase mixture is not trapped 
in the crust in contradistinction to the result of the evolution of a gas 
resulting from differences in gas solubility in the liquid and solid. For 
experiments with void fractions from 0 to 65 percent, the two phase 
flow regimes varied from bubbly flow to churn-turbulent flow and the 
resulting vigorous agitation at the crust surface presumably prevented 
the bubbles in the discontinuous phase from attaching themselves 
to the solid-liquid interface and being incorporated into the solid. 
However, in the experiments involving foams, it was visually observed 
that the two phase structure was relatively stagnant. Also, it was found 
that the crust growth rate and the smooth crust surface was the same 
as for the experiments at lower void fractions. Thus, it can be con
cluded that the two-phase fluid mechanics of the relatively stagnant 
foam structure; that is, water moving in the thin lamallae between the 
bubbles toward the crust and bubbles moving away from the crust is 
not important and that conduction in the crust remained the con
trolling phenomenon. The effect of gas bubbling on the freezing of 
a flowing, superheated liquid on a vertical surface is to enhance the 
convective heat transfer from the liquid to the crust. The crust surface 
remains smooth in this case with no evidence of entrapment of the 
void. In both cases, the crust growth behavior can be modeled by ig
noring the presence of voids (except for the void flux-induced en
hancement of the convective heat flux). 

A c k n o w l e d g m e n t 
This work was performed under the auspices of the U.S. Depart
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Heat Transfer to Generalized 
Couette Flow of a Non-
Newtonian Fluid in Annuli with 
Moving Inner Cylinder 

S. H. Lin1 and D. M. Hsieh1 

I n t r o d u c t i o n 
In a previous work, Lin [1] investigated the heat transfer to a gen

eralized non-Newtonian Couette flow between parallel plates. That 
problem is of practical significance because of its potential applica
tions in the processing of a number of industrially important non-
Newtonian fluids, such as polymer melts and solutions and liquid 
foods. It is noted that the problem of heat transfer to a plane non-
Newtonian Couette flow occurs in plate coating with polymers [2]. A 
corresponding problem of comparable practical importance is the wire 
or tube coating. The polymer flow in the latter coating problem takes 
place between two concentric cylinders in which the outer cylinder 
is motionless while the inner cylinder moves in the flow direction. This 
is exemplified by a process in which the wire surface is to be coated 
with a layer of polymer. 

In spite of the practical significance of this coating problem, it has 
received very little attention in the past. Literature in connection with 
this coating heat transfer problem is virtually not available. Studies 
of the heat transfer characteristics of this problem can lead to better 
understanding of the process performance which in turn can facilitate 
process equipment design. The present study is an attempt to in
vestigate this problem. 

V e l o c i t y D i s t r i b u t i o n of F l o w 
Like the plane non-Newtonian Couette flow, the present flow 
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solidification in pure liquids with forced flow have demonstrated that 
heat convection is relatively undisturbed by the moving freeze 
boundary [8,14]. The good agreement between theory and experiment 
shown in Fig. 3 is a clear indication that this is also the case for the 
two-phase solidification experiments reported herein. 

4 Conc lus ions 
The following conclusions may be made for the experiments re

ported herein. For void fractions up to 90 percent, the presence of a 
discontinuous gas phase in a saturated flowing liquid does not affect 
the freezing of the liquid on a vertical surface. The crust surface re
mains smooth and the void in the two-phase mixture is not trapped 
in the crust in contradistinction to the result of the evolution of a gas 
resulting from differences in gas solubility in the liquid and solid. For 
experiments with void fractions from 0 to 65 percent, the two phase 
flow regimes varied from bubbly flow to churn-turbulent flow and the 
resulting vigorous agitation at the crust surface presumably prevented 
the bubbles in the discontinuous phase from attaching themselves 
to the solid-liquid interface and being incorporated into the solid. 
However, in the experiments involving foams, it was visually observed 
that the two phase structure was relatively stagnant. Also, it was found 
that the crust growth rate and the smooth crust surface was the same 
as for the experiments at lower void fractions. Thus, it can be con
cluded that the two-phase fluid mechanics of the relatively stagnant 
foam structure; that is, water moving in the thin lamallae between the 
bubbles toward the crust and bubbles moving away from the crust is 
not important and that conduction in the crust remained the con
trolling phenomenon. The effect of gas bubbling on the freezing of 
a flowing, superheated liquid on a vertical surface is to enhance the 
convective heat transfer from the liquid to the crust. The crust surface 
remains smooth in this case with no evidence of entrapment of the 
void. In both cases, the crust growth behavior can be modeled by ig
noring the presence of voids (except for the void flux-induced en
hancement of the convective heat flux). 
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In a previous work, Lin [1] investigated the heat transfer to a gen

eralized non-Newtonian Couette flow between parallel plates. That 
problem is of practical significance because of its potential applica
tions in the processing of a number of industrially important non-
Newtonian fluids, such as polymer melts and solutions and liquid 
foods. It is noted that the problem of heat transfer to a plane non-
Newtonian Couette flow occurs in plate coating with polymers [2]. A 
corresponding problem of comparable practical importance is the wire 
or tube coating. The polymer flow in the latter coating problem takes 
place between two concentric cylinders in which the outer cylinder 
is motionless while the inner cylinder moves in the flow direction. This 
is exemplified by a process in which the wire surface is to be coated 
with a layer of polymer. 

In spite of the practical significance of this coating problem, it has 
received very little attention in the past. Literature in connection with 
this coating heat transfer problem is virtually not available. Studies 
of the heat transfer characteristics of this problem can lead to better 
understanding of the process performance which in turn can facilitate 
process equipment design. The present study is an attempt to in
vestigate this problem. 
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problem consists of two driving forces: namely, the axial pressure and 
the moving inner cylinder. The non-Newtonian flow with axial 
pressure gradient and with stationary inner and outer cylinders was 
considered by Frederickson and Bird [3] and Bird, et al. [4] and the 
a detailed procedure for calculating the velocity distribution and the 
flow rate was developed by those authors. However, the generalized 
case with both axial pressure gradient and moving inner cylinder has 
not been dealt with in the literature and hence development of the 
velocity distribution equations is in order. 

Assuming a steady state, one-dimensional flow, the momentum 
balance equation can be represented by 

r dr dz 
(1) 

where T is the shear stress, P the pressure, r the radial coordinate and 
z the axial coordinate. Integration of the above equation assuming 
a constant axial pressure gradient leads to 

(2) 

The velocity distribution for the present annular flow can be di
vided into two cases. If the axial pressure gradient is not big enough, 
the maximum velocity of flow will occur at the moving inner cylinder. 
On the other hand, if the axial pressure gradient becomes sufficiently 
large, a maximum velocity will be generated between the two cylin
ders. These two cases are shown in Fig. 1 in which /3 is the reciprocal 
of the dimensionless pressure gradient parameter. The velocity dis
tribution for the former case will be developed first. 

If the maximum velocity of flow occurs at the moving inner cylinder, 
the velocity gradient is negative over the whole flow region. The shear 
stress for a power-law model then can be written as 

dv\n 

dr. 
(3) 

in which m is the consistency index and n the pseudoplastic index. 
Equation (3) can be combined with equation (2) to yield 

dv 

Tr' 
R~TT (4) 

where a is defined as (-ro/2m)(dP/dz), A equal to (-c/maro)1 / 2 and 
R the dimensionless radial coordinate, r/ro. Integration of equation 
(4) gives 

1 rRl A2\i/» u=i-Jk r i ] d R (5) 

with ,8 being equal to V/r0a
1/n, h the dimensionless inner radius and 

V the constant inner cylinder velocity. It is noted that equation (5) 
satisfies the condition U = 1 at R = k. The constant parameter A can 
be determined by using the condition U = 0 at R = 1. Hence, from 
equation (5), 

s: 
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1 Velocity distributions (or different values of /3 with k = 0.2 and n •• 

The numerical values of A could not be obtained explicitly from 
equation (6) and were evaluated by an iterative method [5]. 

When the maximum velocity takes place between the two cylinders, 
the velocity distribution can be divided into two regions. The first 
region is between the outer cylinder and the point of maximum ve
locity. The velocity gradient in this region is negative and hence 
equation (4) still is applicable. Integration of this equation using the 
condition V\ = 0 at r = /-0 yields 

t/i J/.'(*-
A2W< 

R 
dR;\<R<l (7) 

In the second region between the point of maximum velocity and the 
inner cylinder, the velocity gradient becomes positive and the shear 
stress equation then can be rewirtten as 

ldU2 
T = —m — 

\dr 
(8) 

Combination of equations (2) and (8) and integration using the con
dition i>2 = V at r = kr0 gives 

(/,= ! + 
1 riilA^ 

/? Jk \R ' 

U/n 
R\ dR;k<R<\ (9) 

It is noted that A is in fact equal to X since the maximum velocity 
occurs at R = X. The constant parameter A for this case can be esti
mated by equating equation (7) to equation (9) at R = X. Hence it is 
obtained 

1 H dR~i h H dR- (10) 

The numerical values of A were similarly obtained by an iterative 
method from equation (10) in terms of n, k and p. Several tables of 
the A values have been computed for the present numerical heat 
transfer study.2 

T h e H e a t T r a n s f e r M o d e l 
The steady-state, two-dimensional heat transfer equation with 

constant physical properties and negligible axial conduction can be 
represented by 

dT 
pCpv~— = k1 

dz 

d 2 r , 

dr2 - + r drl [dr, 
(11) 

in which p is the fluid density, Cp the heat transfer capacity, ki the 
thermal conductivity and T the temperature. The third term on the 
right hand side denotes the viscous dissipation which is rather im
portant in the non-Newtonian heat transfer process and was also 
considered in the previous work [1]. 

For simplicity, equation (11) can be cast into dimensionless form 

dZ dR2 RdR 
(12) 

where d is the dimensionless temperature (T - Ti)/(T0 - T{), Z the 
dimensionless axial distance zki/pCpVr0

2 and T\ and T0 the inner 
cylinder wall and inlet fluid temperatures, respectively. The viscous 
dissipation function f{R) is given by 

A2\<.n+l)/n 

R 
f(R) = \R-—j (13) 

for the first case with maximum velocity at the inner cylinder and 

f(R) = \R ; A < R < 1 (14) 

A2 

R 
R 

(n+V)ln 
;k<R<A (15) 

for the second case with maximum velocity between the two cylin
ders. 

The inlet and boundary -conditions for equation (12) are given 
by 

2 The tables of the A values can be obtained from the authors. 
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Fig. 2 The dimensionless bulk temperature versus the dimensionless axial 
distance with ft = 0.4, n = 0.8 and a = 0 

Z = 0; 6 = 1 

<>& 
R = 0; — = 0 

dR 

fl= 1;0 = 1 

(16) 

(17) 

(18) 

Although other boundary conditions, such as constant heat flux or 
insulation at the cylinder wall, can also be used, no attempt was made 
here to adopt them. The Nusselt number at the cylinder wall is de
fined as 

(19) NU=-
 2r* r 
T - Tm \ i>r 

r=ro or kro, 

which can be rendered in dimensionless form as 

Nui = = — 
6\dR i J 

for the inner cylinder wall and 
2 lde 

Nu0 = — — 
6-AdR J 

(20) 

(21) 

for the outer cylinder wall. The dimensionless temperature d is defined 
as 

. s: 6U(R)dR 

f1 U(R)dR 
(22) 

The dimensionless heat transfer equation along with the boundary 
conditions was solved by the implicit Crank-Nicolson finite difference 
method [5] to generate the local temperature data which were in turn 
employed to evaluate the bulk temperature and the Nusselt numbers 
from equations (20, 21) and (22). 

Discussion of Results 
In order to ascertain the accuracy of the implicit finite difference 

scheme used in this work, several runs were made for the problem of 
heat transfer to non-Newtonian flow in annuli without pressure gra
dient as a special case so that comparison can be made with the pre
vious results [6]. The present numerical solutions and those of Hong 
and Mathews [6] are essentially identical. 

Figure 2 demonstrates the effect of the reciprocal of the dimen
sionless pressure gradient group /? on the dimensionless bulk tem
perature. According to definition, small /3 corresponds to a high 
pressure gradient and hence the flow will be faster as /? decreases. Fast 

Fig. 3 The Nusselt numbers versus the dimensionless axial distance with 
ft = 0.4, n = 0.8 and a = 0 
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Fig. 4 The dimensionless bulk temperature versus the dimensionless axial 
distance with k = 0.4, /3 = 0.2 and n = 0.8 

flow reduces the residence time the fluid stays inside the channel and 
hence reduces the heat loss. In the meantime, a fast flow tends to in
crease heat transfer through the inner cylinder. For this particular 
case, the latter effect seems to be of minor significance as compared 
to the effect of fluid residence time and so a higher bulk temperature 
is maintained as ft increases. 

The effect of /3 on the Nusselt numbers pertaining to the same 
physical parameters of Fig. 2 is displayed in Fig. 3. At the inner cyl
inder wall, the Nusselt number decreases steadily from the channel 
entrance and tapers off as Z becomes sufficiently large. Appearance 
of a constant inner Nusselt number at large Z is presumably due to 
the fully development of temperature profile. The outer Nusselt 
number shows a different characteristic. It increases with increasing 
Z until full development of temperature profile is reached. 

It is well known that the viscous diisipation can be rather significant 
in many practical circumstances because of high apparent viscosity 
of non-Newtonian fluids. Figure 4 shows that the dimensionless bulk 
temperature is significantly increased as the viscous dissipation pa-
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r a m e t e r a increases . T h i s is due to i rreversible conversion of m e 
chanical energy t o t h e r m a l one. 
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-Suwono Continued* 
1 , 1 0 , 1 0 0 a n d the resu l t for a very large P r a n d t l n u m b e r ca lcula ted 

assymtotically using Lighthill 's hypothesis (see for example reference 

[6]), it is possible to cons t ruc t an empir ical formulae which is valid 

for larger var ia t ion of P r a n d t l number . I t is found t h a t t h e following 

re la t ion. 

N u = 1.021 R e 1 / 2 P r 1 / 3 [1 - 0.244 P r " 1 ' 3 

- 0.139 P r ~ 2 / 3 + 0.035 P r " 1 ] 

for P r > 0.72 

Cor re la tes t o wi th in 2 pe rcen t of the calculat ion resul ts . 

(28) 
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On the Minimum Film 
Boiling Conditions for 
Spherical Geometries1 

V. K. Dhir.2 The authors have developed expressions for the 
minimum film boiling heat fluxes and the film boiling heat transfer 
coefficients on spheres submerged in pools of saturated or subcooled 
liquids. In Fig. 7 of the paper, the authors show that the minimum 
heat flux data of Dhir and Purohit [1] are well bounded by their 
models for complete wetting and no wetting of the sphere surface. As 
communicated to the authors also, an error appears to have been made 
either while calculating or while plotting equation (27). Figure 1 shows 
how the theory will compare with the data when no wetting of the 
sphere is assumed to occur. It is noted that for subcooled water, the 
predicted heat fluxes are much higher than the data. The disagree
ment between theory and the data increases with subcooling. For 
water subcooling of 30° C, the predicted heat flux is about 60 percent 
higher than the data. In Fig. 1 the heat fluxes given by equation (27) 
for completely wettable surface are not plotted because it is now 
known what instantaneous contact temperatures were used by the 
authors. Nevertheless the predicted heat fluxes will be even higher 
if the surface was assumed to be completely wettable. 

The experimentally observed film boiling heat transfer coefficients 
near the minimum are compared in Fig. 2 with those predicted by 
equation (38) of the paper for the nonwetting surface. In calculating 
the heat transfer coefficients from equation (38), the wall temperature 
is taken to be the minimum film boiling temperature as reported in 
reference [1]. With subcooled water, the heat transfer coefficient 
predicted for a wetting surface will be about the same as for a non-
wetting surface, since at the observed minimum film boiling tem
perature equation (33) predicts the weighting factor for the contact 
area to be very small. Again it is seen that for water subcoolings of 
10-30°C, the predicted heat transfer coefficients are about twice the 
observed values. As reported in reference [1] and also plotted in Fig. 
2, the analysis of Dhir and Purohit yields film boiling heat transfer 
coefficients that are about 25-40 percent lower than the data. It should 
also be pointed out that the way the equations (27) and (38) for 
minimum heat flux and the film boiling heat transfer coefficient are 
written, the minimum film boiling temperature for subcooled liquids 
cannot be determined using the two equations as one could do for the 
saturated liquids. 

In conclusion, contrary to the authors' claim, equations (27) and 
(38) do not compare well with the film boiling data obtained on 24.5 
mm dia stainless steel spheres submerged in a pool of subcooled 
water. 
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Fig. 1 Comparison of observed and predicted minimum heat flux on 25.4 
mm stainless steel spheres submerged in a pool of water 
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Fig. 2 Comparison of observed and predicted film boiling heat transfer 
coefficient on 25.4 mm stainless steel spheres 
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Authors' Closure 

The authors appreciate Professor Dhir's interest and comments 
on the subject paper. From his discussion, we recognize an error in 
equation (24) describing the subcooling contribution to the minimum. 
heat flux. The heat transfer into the subcooled liquid during the pe
riod of bubble release was initially estimated by a single-dimension 
analysis, where the liquid temperature gradient was integrated over 
the period of bubble release. For larger spheres or flat plate heaters, 
where multiple vapor domes are present, two-dimensional analysis 

is required where four bubbles per unit heater (~X2) are considered 
rather than two for single-dimension analysis. This results in an ex
pression for the subcooling contribution to the minimum heat flux 
which is one half of that expressed by equation (24). Therefore, for 
correct analysis, the factor 2 which appears in equation (24) and 
subsequently in the subcooling contributions of equations (27, 36) and 
(38) should be omitted. Our calculations and figures within the orig
inal manuscript reflect this correction and are therefore correct as 
shown. 

Since Professor Dhir was unaware of the error in equation (24) his 
calculations are high by a factor of 2, as illustrated in Figs. 1 and 2 of 
his discussion. 

ERRATA 

Erratum: C. F. Delale, "Lower Bound Estimate for Droplet Size in Two-Phase Dispersed Flow," published in the August 1980 issue 
of the J O U R N A L O F H E A T T R A N S F E R , pp. 501-507. 

Equation (A6) should read 

hd(T, — Tsat) 

t//d 
(A6) 

9r=0 

Erratum: R. h. Webb and M. J. Scott, "A Parametric Analysis of the Performance of Internally Finned Tubes for Heat Exchanger 
Applications," published in the February 1980 issue of the J O U R N A L OF H E A T T R A N S F E R , pp. 38-43. 

1 The last paragraph of p. 38 should read " . . . equations (8) and (10) for 10,000 < Re < 80,000. Equation (8) contains s-75a rather 

2 Equations (3, 5,8, 9,11, 13,15) and (16) contain the general term *'s "a". This should read "sec na". 
The elusive equations (1) and (2) were deleted to meet Journal length limitations. They were repeated in the Appendix as equations 
(8) and (10). The paper does not contain equations numbered (1) and (2). 
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ERRATA 

Erratum: C. F. Delale, "Lower Bound Estimate for Droplet Size in Two-Phase Dispersed Flow," published in the August 1980 issue 
of the JOURNAL OF HEAT TRANSFER, pp. 501-507. 

Equation (A6) should read 

hd ( T. - Tsat) I 
U~ QI=O 

(A6) 

qr==O 
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